poj1061 青蛙的约会(扩展欧几里得算法求解同余方程)

本文主要是介绍poj1061 青蛙的约会(扩展欧几里得算法求解同余方程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

                               青蛙的约会

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

 

 

题目分析:假设走了t次相遇,则有等式(x+mt)-(y+nt)=pL成立,等价于求解同余方程(n-m)t≡(x-y) (mod L)的最小整数解

(a)对于一般同余方程ax=d mod b,方程有解,则有(a,d)| b ,所以问题第一步判断解的情况

(b)有(n-m)t+pL=x-y,t、p均为未知变量,将问题转化为求解ax+by=d的最小整数x,扩展欧几里得算法:

briefly:扩展欧几里得算法是辗转相除法求gcd的拓展,表现在ax+by=gcd(a,b),函数extended_gcd()不仅能返回gcd(a,b),还能求出gcd的线性系数x,y,具体的操作步骤如下:

 

       ①首先化简 ,得到新的ax+by=d,注意此时(a,b)=1

       ②先求ax+by=1的解x0、y0(解具有唯一性),利用扩展欧几里得算法得到唯一解x0,则ax+by=d的解x=d*x0

       ③通解X=x+b*k(k为整数)

(c)通过(b)实际上可以得到同余方程的通解,但是题目要求最小整数解,利用min=(X%b+b)%b,X取正取负均满足最小,问题得解

代码+部分解释:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <map>
#include <vector>
#include <cstring>
#include<cmath>
#define maxn 1500
using namespace std;
long long x,y;
long long extended_gcd(long long a,long long b,long long &x,long long &y)//扩展欧几里得算法:求等式ax+by=gcd(a,b)中的x,y;返回d=gcd(a,b)
{if(b==0) {x=1;y=0;return a;} //边界a*1+0*0=gcd(a,0)=a;long long d=extended_gcd(b,a%b,y,x);y-=a/b*x;return d;
}
long long gcd(long long a,long long b)
{return b==0?a:gcd(b,a%b);
}
int main()
{//freopen("input.txt","r",stdin);long long xx,yy,m,n,l;long a,b,d;while(cin>>xx>>yy>>m>>n>>l){a=n-m;b=l;d=xx-yy;  //ax=d(mod b)long long res=gcd(a,b);if(d%res) cout<<"Impossible"<<endl;//根据同余方程理论首先判断方程有没有解,有解的情况下用扩展欧几里得算法else{                                  //扩展欧几里得算法求解 ax+by=da/=res;b/=res;d/=res;               //约去(a,b)extended_gcd(a,b,x,y);x*=d;         //求特解long long ans=(x%b+b)%b;//求非负min(x),且x=x0+b/d*t,分析可得x=(x0%b+b)%bcout<<ans<<endl;}}return 0;
}

 

这篇关于poj1061 青蛙的约会(扩展欧几里得算法求解同余方程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754688

相关文章

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费