文献速递:深度学习--端到端深度学习方法用于通过语音信号检测帕金森病

本文主要是介绍文献速递:深度学习--端到端深度学习方法用于通过语音信号检测帕金森病,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文献速递:深度学习–端到端深度学习方法用于通过语音信号检测帕金森病

Title

题目

End-to-end deep learning approach for Parkinson’s

disease detection from speech signals

端到端深度学习方法用于通过语音信号检测帕金森病

01

文献速递介绍

帕金森病是世界上增长最快的神经系统疾病之一。超过90%的帕金森病患者患有运动减缓性构音障碍,这表现为声音低沉、单调、基本频率范围缩小、辅音和元音不准确、声音含气以及不规则的停顿。之前的研究显示,语音信号可能是区分帕金森病患者和健康对照组(HCs)的有用临床证据。有趣的是,声音障碍是帕金森病早期发展的重要表现。因此,有效和智能地从语音中检测这些声音障碍可能是早期诊断的重要工具。对于开发非侵入式工具以检测和诊断帕金森病,包括基于语音的机器学习(ML)技术,人们的兴趣日益增加。传统的ML方法,如支持向量机(SVM)、K最近邻(KNN)、决策树、遗传算法、朴素贝叶斯(NB)、高斯过程分类及其组合通常基于不同测量提取手工设计的语音特征,包括梅尔频率倒谱系数(MFCC)、音高、颤音和闪烁值等声音信号。最近,一些新的特征被发现对于检测帕金森病有效,如内在模式函数倒谱系数(IMFCC)、基于非负矩阵分解的时频[21]、希尔伯特倒谱系数(HCCs)、瞬时能量偏差倒谱系数(IEDCC)以及基于经验模式分解的能量方向特征(EDF-EMD)。传统机器学习方法的性能主要受模型架构、手工设计的语音特征和特征选择方法的影响。

相比之下,深度学习因其良好的学习能力和低泛化误差,在许多模式识别任务中获得了相当大的流行度。对于通过语音检测帕金森病,有两种主要的深度学习方法:基于特征工程的方法和端到端的方法。

Abstract

摘要

超过90%的帕金森病患者患有低动力性构音障碍。本文提出了一种新颖的端到端深度学习模型,用于从语音信号中检测帕金森病。所提出的模型使用时间分布的二维卷积神经网络(2D-CNNs)提取时间序列动态特征,然后使用一维卷积神经网络(1D-CNN)捕获这些时间序列之间的依赖关系。在两个数据库上验证了所提出模型的性能。在数据库1上,所提出的模型性能优于基于专家特征的机器学习模型,并取得了令人瞩目的结果,在持续元音/a/的语音任务上准确率达到81.6%,在阅读一个简短句子(/si shi si zhi shi shi zi/)的中文语音任务上准确率为75.3%。在数据库2上,所提出的模型在包括元音、单词和句子在内的多种声音类型上进行了评估。在包括阅读简单(/loslibros/)和复杂(/viste/)西班牙语句子的语音任务上,准确率达到了高达92%。通过可视化模型生成的特征,发现学到的时间序列动态特征能够捕捉到帕金森病声音的减少的总体频率范围和减少的变异性这些重要的临床证据,这对于检测帕金森病患者是重要的。结果还表明,对于从语音中检测帕金森病,Mel频谱图的低频区域比高频区域更有影响力和重要性。

Methods

方法

The architecture of the herein proposed end-to-end deep learning model (Fig. 1) for Parkinson’s disease detection con tains two modules. The first module is composed of a seriesof time-distributed 2D-CNN (two-dimensional convolutional neural networks) blocks, which transform the input to time series dynamic features. Then, the obtained time series dynamic features are passed through the second module con taining a 1D-CNN (one-dimensional convolutional neural net work) block to learn the dependencies between them.

The input of the first module is a sequence of overlapping segments on the log Mel-spectrograms of an input speech sig nal. A sliding window is applied along the temporal axis to obtain the segments. The time-distributed 2D-CNN blocks are used to detect the local features for each segment, i.e., the time series dynamic features. Each time-distributed 2D CNN block is stacked by a 2D convolutional layer, batch nor malization layer, 2D average pooling layer, and dropout layer.

The role of the 2D convolutional layer is to capture local spa tial information of the spectrogram. The batch normalization layer increases the convergence speed and helps improve generalization. The 2D average pooling layer and dropout layer are used afterwards for dimensionality reduction and preventing overfitting, respectively.

此处提出的端到端深度学习模型的架构(图1)用于帕金森病的检测,包含两个模块。第一个模块由一系列时间分布的二维卷积神经网络(2D-CNN)块组成,这些块将输入转换为时间序列动态特征。然后,获得的时间序列动态特征通过包含一维卷积神经网络(1D-CNN)块的第二模块,以学习它们之间的依赖关系。

第一个模块的输入是输入语音信号的对数梅尔频谱图上的一系列重叠段。沿时间轴应用滑动窗口以获得这些段。时间分布的2D-CNN块用于检测每个段的局部特征,即时间序列动态特征。每个时间分布的2D-CNN块由一个2D卷积层、批量归一化层、2D平均池化层和dropout层堆叠而成。

2D卷积层的作用是捕获频谱图的局部空间信息。批量归一化层提高了收敛速度,并帮助改善泛化。2D平均池化层和dropout层随后用于降维和防止过拟合。

Conclusion

结论

Discriminating health control from Parkinson’s disease sub jects using speech signals is considered an important step toward noninvasive diagnostic decision support for PD. This paper proposed a novel end-to-end deep learning architecture for Parkinson’s disease detection from speech signals, which incorporates TSC and spectrum-based feature extraction to efficiently capture the dynamics of speech signals for Parkin son’s disease detection. The proposed model was demon strated the effectiveness on two databases of different languages (Chinese and Spanish). On Database-1, the pro posed model outperformed expert feature-based ML models using speech features extracted by NeuroSpeech and Surf board and achieved promising results, showing an accuracy of 81.6% on the speech task of sustained vowel /a/ and 75.3% on the speech task of reading a short sentence. On Database-2, the proposed model was assessed on multiple sound types, including vowels, words, and sentences. An accuracy of up to 92% was obtained for speech tasks that included reading of a simple sentence (/loslibros/) and of a complex sentence (/viste/) in Spanish, which exhibited higher detection accuracy than that previously reported, demon strating the effectiveness of the proposed model. In addition, by visualizing the features generated by the model, it was found that the learned time series dynamic features are able to capture the characteristics of the reduced overall frequency range and reduced variability in Parkinson’s disease sounds. The results also suggest that the low-frequency region is more influential and important for Parkinson’s disease detec tion than the high-frequency region, especially with the input of vowels and words.

In future works, we will investigate the robustness of the proposed model on a relatively large dataset and on more types of sound. In addition, we will apply the proposed model to the stage classification of Parkinson’s disease to explore its applicability to this multi-label classification task. Table 15 lists the abbreviations used in this paper.

使用语音信号区分健康对照组和帕金森病患者被认为是朝着PD非侵入式诊断决策支持重要的一步。本文提出了一种新颖的端到端深度学习架构,用于从语音信号中检测帕金森病,该架构结合了TSC和基于频谱的特征提取,以有效捕获帕金森病检测的语音信号动态。在两个不同语言(中文和西班牙语)的数据库上展示了所提模型的有效性。在数据库1上,所提模型在使用NeuroSpeech和Surfboard提取的语音特征上超越了基于专家特征的机器学习模型,并取得了令人鼓舞的结果,显示在持续元音/a/的语音任务上准确率达到81.6%,在读短句的语音任务上准确率为75.3%。在数据库2上,所提模型在包括元音、单词和句子在内的多种声音类型上进行了评估。对于包括读简单句子(/loslibros/)和复杂句子(/viste/)的西班牙语语音任务,获得了高达92%的准确率,显示出比以前报道的更高的检测准确率,证明了所提模型的有效性。此外,通过可视化模型生成的特征,发现学习到的时间序列动态特征能够捕捉到帕金森病声音中整体频率范围缩小和变异性减少的特征。结果还表明,低频区域对于帕金森病的检测比高频区域更具影响力和重要性,尤其是在输入元音和单词时。

在未来的工作中,我们将探究所提模型在相对较大的数据集和更多类型的声音上的鲁棒性。此外,我们将应用所提模型于帕金森病的分期分类,以探索其对这一多标签分类任务的适用性。

表15列出了本文中使用的缩写。

Figure

图片

Fig. 1 – Architecture of the end-to-end deep learning model for Parkinson’s disease detection from speech signals

图1 - 用于通过语音信号检测帕金森病的端到端深度学习模型架构

图片

Fig. 2 – Learning curve results of end-to-end deep learning models on the speech task of sustained vowel/a/ (Database-1).

图2 - 端到端深度学习模型在持续元音/a/语音任务上的学习曲线结果(数据库1)。

图片

Fig. 3 – Learning curve results of end-to-end deep learning models on the speech task of reading the short sentence/si shi si zhi shi shi zi/ (Database-1).

图3 - 端到端深度学习模型在读短句/四是四十是十狮子/语音任务上的学习曲线结果(数据库1)。

图片

Fig. 4 – The t-SNE scatter plots of hidden features on the last layer of the proposed deep learning model after dimensionality reduction (Database-2).

图4 - 经过降维后,提出的深度学习模型最后一层隐藏特征的t-SNE散点图(数据库2)。

图片

Fig. 5 – Critical difference diagram showing pairwise statistical difference comparison of seven deep learning models on Database-1 and Database-2.

图5 - 关键差异图,显示了在数据库1和数据库2上七个深度学习模型之间成对统计差异比较。

图片

Fig. 6 – Feature visualization (guided Grad-CAM) comparison of healthy control and Parkinson’s disease samples for the speech task of sustained vowel/a/ (Database-1).

图6 - 健康对照组和帕金森病样本在持续元音/a/语音任务上的特征可视化(引导型Grad-CAM)比较(数据库1)。

图片

Fig. 7 – Comparison of features obtained from Time_distributed_flatten layer for male samples with different HY stages(Database-1).

图7 - 不同HY阶段的男性样本从时间分布式平展层获得的特征比较(数据库1)。

图片

Fig. 8 – Comparison of features obtained from Time_distributed_flatten layer for female samples with different HY stages(Database-1).

图8 - 不同HY阶段的女性样本从时间分布式平展层获得的特征比较(数据库1)。

图片

Fig. 9 – ROC curve results obtained for Database-2.

图9 - 获取的数据库2的ROC曲线结果。

Table

图片

Table 1 – Numbers and distributions of Database-1 and Database-2 samples by gender, age, and HY stage.

表1 - 根据性别、年龄和HY阶段,数据库1和数据库2样本的数量和分布。

图片

Table 2 – Speech tasks and the sample size included in this study.

表2 - 本研究包含的语音任务和样本大小。

图片

Table 3 – Optimized parameters for ML models (Database-1).

表3 - 机器学习模型的优化参数(数据库1)。

图片

Table 4 – Experimental results of traditional machine learning models on the speech task of sustained vowel/a/ (Database-1).

表4 - 传统机器学习模型在持续元音/a/语音任务上的实验结果(数据库1)。

图片

Table 5 – Experimental results of traditional ML models on the speech task of reading the short sentence/si shi si zhi shi shi zi/ (Database-1).

表5 - 传统机器学习模型在读短句/四是四十是十狮子/语音任务上的实验结果(数据库1)。

图片

Table 6 – Hyperparameter search space for the end-to-end deep learning models (Database-1).

表6 - 端到端深度学习模型的超参数搜索空间(数据库1)。

图片

Table 7 – Experimental results of the end-to-end deep learning models on the speech task of sustained vowel/a/ (Database-1).

表7 - 端到端深度学习模型在持续元音/a/语音任务上的实验结果(数据库1)。

图片

Table 8 – Experimental results of the end-to-end deep learning models on the speech task of reading the short sentence/si shi si zhi shi shi zi/ (Database-1).

表8 - 端到端深度学习模型在读短句/四是四十是十狮子/语音任务上的实验结果(数据库1)。

图片

Table 9 – Experimental results using different numbers of frames on the speech task of sustained vowel/a/ (Database-1).

表9 - 在持续元音/a/语音任务上使用不同帧数的实验结果(数据库1)。

图片

Table 10 – Experimental results using different numbers of frames on the speech task of reading the short sentence/si shi si zhi shi shi zi/ (Database-1).

表10 - 在读短句/四是四十是十狮子/语音任务上使用不同帧数的实验结果(数据库1)。

图片

Table 11 – The optimal hyperparameters obtained from Database-1 for the experiments on Database-2.

表11 - 从数据库1获取的用于数据库2实验的最优超参数。

图片

Table 12 – Results of the proposed model on multiple speech tasks (Database-2).

表12 - 提出的模型在多个语音任务上的结果(数据库2)。

图片

Table 13 – Cross-database results of the proposed model. (Independent test results with independent datasets.)

表13 - 提出模型的跨数据库结果。(独立数据集的独立测试结果。)

图片

Table 14 – Summary of recent studies on Parkinson’s disease detection using expert feature engineering and end-to-end deep learning.

表14 - 使用专家特征工程和端到端深度学习进行帕金森病检测的近期研究总结。

图片

Table 15 – The abbreviations used in this paper.

表15 - 本文中使用的缩写。

这篇关于文献速递:深度学习--端到端深度学习方法用于通过语音信号检测帕金森病的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754639

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶