一致代价搜索(UCS)的原理和代码实现

2024-02-28 06:08

本文主要是介绍一致代价搜索(UCS)的原理和代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一:基本原理

        一致代价搜索是在广度优先搜索上进行扩展的,也被成为代价一致搜索,他的基本原理是:一致代价搜索总是扩展路径消耗最小的节点N。N点的路径消耗等于前一节点N-1的路径消耗加上N-1到N节点的路径消耗。

        图的一致性代价搜索使用了优先级队列并在边缘中的状态发现更小代价的路径时引入的额外的检查。边缘的数据结构需要支持有效的成员校测,这样它就结合了优先级队列和哈希表的能力。

我们以前在高级人工智能第一篇讲无信息搜索的文章中(https://blog.csdn.net/Suyebiubiu/article/details/100738725),有一个例子是有名的罗马尼亚的旅行问题。我们这次可以尝试着用一致代价搜索方式进行解决这个问题。

我们想要从Arad到达Bucharest,姑且认为是A和B两个位置,我们想要使用一致代价搜索方式

  • 1.根据上图创建一个搜索树,以A为初始状态,B为目标状态
  • 2.实现代价一致搜索的图搜索算法并记录搜索路径

二:算法实现流程

frontier:边缘。存储未扩展的节点。优先级队列,按路径消耗来排列
explored:探索集。存储的是状态


2.1 流程分析:

1.如果边缘为空,则返回失败。操作:EMPTY?(frontier)
2.否则从边缘中选择一个叶子节点。操作:POP(frontier)
3.目标测试:通过返回,否则将叶子节点的状态放在探索集
4.遍历叶子节点的所有动作

  • 每个动作产生子节点
  • 如果子节点的状态不在探索集或者边缘,则插入到边缘集合。操作:INSERT(child, frontier)
  • 否则如果边缘集合中如果存在此状态且有更高的路径消耗,则用子节点替代边缘集合中的状态
     

A是起点,C是终点。

2.2 一致代价搜索算法执行:

  • A放入frontier
  • ---第1次
  • 从frontier中取出A(此时路径消耗最小)检测发现不是目标
  • A放入explored
  • 遍历A的子节点,D和B放入frontier
  • ---第2次
  • 从frontier中取出D(此时路径消耗最小)检测发现不是目标
  • D放入explored
  • 遍历D的子节点,C放入frontier
  • ---第3次
  • 从frontier中取出B(此时路径消耗最小)检测发现不是目标
  • B放入explored
  • 遍历B的子节点,E放入frontier
  • ---第4次
  • 从frontier中取出E(此时路径消耗最小)检测发现不是目标
  • E放入explored
  • 遍历E的子节点,C准备放入frontier,发现此时frontier已有C,但路径消耗为8大于7,则替代frontier中的C
  • ---第5次
  • 从frontier中取出C(此时路径消耗最小)检测发现是目标,成功
  • 最优路径:A->B->E->C
     

从上例可以看出,一致代价搜索具有最优性,关键在于frontier中存储是按路径消耗顺序来排序的。

2.3 算法性能分析:

2.3.1:分析一致代价搜索的完备性、最优性、时间和空间复杂度

2.3.2:指出无信息搜索策略和有信息搜索策略的不同

2.3.3:分析一致代价搜索如何保证算法的最优性

三:源代码分析

import pandas as pd
from pandas import Series, DataFrame# 城市信息:city1 city2 path_cost
_city_info = None# 按照路径消耗进行排序的FIFO,低路径消耗在前面
_frontier_priority = []# 节点数据结构
class Node:def __init__(self, state, parent, action, path_cost):self.state = stateself.parent = parentself.action = actionself.path_cost = path_costdef main():global _city_infoimport_city_info()while True:src_city = input('输入初始城市\n')dst_city = input('输入目的城市\n')# result = breadth_first_search(src_city, dst_city)result = uniform_cost_search(src_city, dst_city)if not result:print('从城市: %s 到城市 %s 查找失败' % (src_city, dst_city))else:print('从城市: %s 到城市 %s 查找成功' % (src_city, dst_city))path = []while True:path.append(result.state)if result.parent is None:breakresult = result.parentsize = len(path)for i in range(size):if i < size - 1:print('%s->' % path.pop(), end='')else:print(path.pop())def import_city_info():global _city_infodata = [{'city1': 'Oradea', 'city2': 'Zerind', 'path_cost': 71},{'city1': 'Oradea', 'city2': 'Sibiu', 'path_cost': 151},{'city1': 'Zerind', 'city2': 'Arad', 'path_cost': 75},{'city1': 'Arad', 'city2': 'Sibiu', 'path_cost': 140},{'city1': 'Arad', 'city2': 'Timisoara', 'path_cost': 118},{'city1': 'Timisoara', 'city2': 'Lugoj', 'path_cost': 111},{'city1': 'Lugoj', 'city2': 'Mehadia', 'path_cost': 70},{'city1': 'Mehadia', 'city2': 'Drobeta', 'path_cost': 75},{'city1': 'Drobeta', 'city2': 'Craiova', 'path_cost': 120},{'city1': 'Sibiu', 'city2': 'Fagaras', 'path_cost': 99},{'city1': 'Sibiu', 'city2': 'Rimnicu Vilcea', 'path_cost': 80},{'city1': 'Rimnicu Vilcea', 'city2': 'Craiova', 'path_cost': 146},{'city1': 'Rimnicu Vilcea', 'city2': 'Pitesti', 'path_cost': 97},{'city1': 'Craiova', 'city2': 'Pitesti', 'path_cost': 138},{'city1': 'Fagaras', 'city2': 'Bucharest', 'path_cost': 211},{'city1': 'Pitesti', 'city2': 'Bucharest', 'path_cost': 101},{'city1': 'Bucharest', 'city2': 'Giurgiu', 'path_cost': 90},{'city1': 'Bucharest', 'city2': 'Urziceni', 'path_cost': 85},{'city1': 'Urziceni', 'city2': 'Vaslui', 'path_cost': 142},{'city1': 'Urziceni', 'city2': 'Hirsova', 'path_cost': 98},{'city1': 'Neamt', 'city2': 'Iasi', 'path_cost': 87},{'city1': 'Iasi', 'city2': 'Vaslui', 'path_cost': 92},{'city1': 'Hirsova', 'city2': 'Eforie', 'path_cost': 86}]_city_info = DataFrame(data, columns=['city1', 'city2', 'path_cost'])# print(_city_info)def breadth_first_search(src_state, dst_state):global _city_infonode = Node(src_state, None, None, 0)# 目标测试if node.state == dst_state:return nodefrontier = [node]explored = []while True:if len(frontier) == 0:return Falsenode = frontier.pop(0)explored.append(node.state)if node.parent is not None:print('处理城市节点:%s\t父节点:%s\t路径损失为:%d' % (node.state, node.parent.state, node.path_cost))else:print('处理城市节点:%s\t父节点:%s\t路径损失为:%d' % (node.state, None, node.path_cost))# 遍历子节点for i in range(len(_city_info)):dst_city = ''if _city_info['city1'][i] == node.state:dst_city = _city_info['city2'][i]elif _city_info['city2'][i] == node.state:dst_city = _city_info['city1'][i]if dst_city == '':continuechild = Node(dst_city, node, 'go', node.path_cost + _city_info['path_cost'][i])print('\t孩子节点:%s 路径损失为%d' % (child.state, child.path_cost))if child.state not in explored and not is_node_in_frontier(frontier, child):# 目标测试if child.state == dst_state:print('\t\t 这个孩子节点就是目的城市')return childfrontier.append(child)print('\t\t 添加孩子节点到这个孩子')def is_node_in_frontier(frontier, node):for x in frontier:if node.state == x.state:return Truereturn Falsedef uniform_cost_search(src_state, dst_state):global _city_info, _frontier_prioritynode = Node(src_state, None, None, 0)frontier_priority_add(node)explored = []while True:if len(_frontier_priority) == 0:return Falsenode = _frontier_priority.pop(0)if node.parent is not None:print('处理城市节点:%s\t父节点:%s\t路径损失为:%d' % (node.state, node.parent.state, node.path_cost))else:print('处理城市节点:%s\t父节点:%s\t路径损失为:%d' % (node.state, None, node.path_cost))# 目标测试if node.state == dst_state:print('\t 目的地已经找到了')return nodeexplored.append(node.state)# 遍历子节点for i in range(len(_city_info)):dst_city = ''if _city_info['city1'][i] == node.state:dst_city = _city_info['city2'][i]elif _city_info['city2'][i] == node.state:dst_city = _city_info['city1'][i]if dst_city == '':continuechild = Node(dst_city, node, 'go', node.path_cost + _city_info['path_cost'][i])print('\t孩子节点:%s 路径损失为:%d' % (child.state, child.path_cost))if child.state not in explored and not is_node_in_frontier(_frontier_priority, child):frontier_priority_add(child)print('\t\t 添加孩子到优先队列')elif is_node_in_frontier(_frontier_priority, child):# 替代为路径消耗少的节点frontier_priority_replace_by_priority(child)def frontier_priority_add(node):""":param Node node::return:"""global _frontier_prioritysize = len(_frontier_priority)for i in range(size):if node.path_cost < _frontier_priority[i].path_cost:_frontier_priority.insert(i, node)return_frontier_priority.append(node)def frontier_priority_replace_by_priority(node):""":param Node node::return:"""global _frontier_prioritysize = len(_frontier_priority)for i in range(size):if _frontier_priority[i].state == node.state and _frontier_priority[i].path_cost > node.path_cost:print('\t\t 替换状态: %s 旧的损失:%d 新的损失:%d' % (node.state, _frontier_priority[i].path_cost,node.path_cost))_frontier_priority[i] = nodereturnif __name__ == '__main__':main()

四:运行结果

输入初始城市
Arad
输入目的城市
Bucharest
处理城市节点:Arad	父节点:None	路径损失为:0孩子节点:Zerind 路径损失为:75添加孩子到优先队列孩子节点:Sibiu 路径损失为:140添加孩子到优先队列孩子节点:Timisoara 路径损失为:118添加孩子到优先队列
处理城市节点:Zerind	父节点:Arad	路径损失为:75孩子节点:Oradea 路径损失为:146添加孩子到优先队列孩子节点:Arad 路径损失为:150
处理城市节点:Timisoara	父节点:Arad	路径损失为:118孩子节点:Arad 路径损失为:236孩子节点:Lugoj 路径损失为:229添加孩子到优先队列
处理城市节点:Sibiu	父节点:Arad	路径损失为:140孩子节点:Oradea 路径损失为:291孩子节点:Arad 路径损失为:280孩子节点:Fagaras 路径损失为:239添加孩子到优先队列孩子节点:Rimnicu Vilcea 路径损失为:220添加孩子到优先队列
处理城市节点:Oradea	父节点:Zerind	路径损失为:146孩子节点:Zerind 路径损失为:217孩子节点:Sibiu 路径损失为:297
处理城市节点:Rimnicu Vilcea	父节点:Sibiu	路径损失为:220孩子节点:Sibiu 路径损失为:300孩子节点:Craiova 路径损失为:366添加孩子到优先队列孩子节点:Pitesti 路径损失为:317添加孩子到优先队列
处理城市节点:Lugoj	父节点:Timisoara	路径损失为:229孩子节点:Timisoara 路径损失为:340孩子节点:Mehadia 路径损失为:299添加孩子到优先队列
处理城市节点:Fagaras	父节点:Sibiu	路径损失为:239孩子节点:Sibiu 路径损失为:338孩子节点:Bucharest 路径损失为:450添加孩子到优先队列
处理城市节点:Mehadia	父节点:Lugoj	路径损失为:299孩子节点:Lugoj 路径损失为:369孩子节点:Drobeta 路径损失为:374添加孩子到优先队列
处理城市节点:Pitesti	父节点:Rimnicu Vilcea	路径损失为:317孩子节点:Rimnicu Vilcea 路径损失为:414孩子节点:Craiova 路径损失为:455孩子节点:Bucharest 路径损失为:418替换状态: Bucharest 旧的损失:450 新的损失:418
处理城市节点:Craiova	父节点:Rimnicu Vilcea	路径损失为:366孩子节点:Drobeta 路径损失为:486孩子节点:Rimnicu Vilcea 路径损失为:512孩子节点:Pitesti 路径损失为:504
处理城市节点:Drobeta	父节点:Mehadia	路径损失为:374孩子节点:Mehadia 路径损失为:449孩子节点:Craiova 路径损失为:494
处理城市节点:Bucharest	父节点:Pitesti	路径损失为:418目的地已经找到了
从城市: Arad 到城市 Bucharest 查找成功
Arad->Sibiu->Rimnicu Vilcea->Pitesti->Bucharest

五:结果说明

 

 

这篇关于一致代价搜索(UCS)的原理和代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754590

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J