时间序列分析实战(四):Holt-Winters建模及预测

2024-02-27 23:12

本文主要是介绍时间序列分析实战(四):Holt-Winters建模及预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

   个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

文章目录

  • 1 目的
  • 2 Holt-Winters三参数指数平滑乘法模型
  • 3 Holt-Winters三参数指数平滑乘法模型预测

1 目的

  该篇文章主要展示针对时序进行Holt-Winters建模,案例数据同 时间序列分析实战(三):时序因素分解法:某欧洲小镇1963年1月至1976年12月每月旅馆入住的房间数构成时间序列 x t x_t xt

2 Holt-Winters三参数指数平滑乘法模型

  通过上一篇 Blog 知道该时序数据具有季节效应,并且具有长期趋势,考虑首先建立Holt-Winters三参数指数平滑乘法模型:

x t = [ a ( t ) + b ( t ) ] c ( t ) x_t=[a(t)+b(t)]c(t) xt=[a(t)+b(t)]c(t)

  运行程序:

fit1=HoltWinters(data1,seasonal = "mult")
fit1

  运行结果:

## Holt-Winters exponential smoothing with trend and multiplicative seasonal component.
## 
## Call:
## HoltWinters(x = data1, seasonal = "mult")
## 
## Smoothing parameters:
##  alpha: 0.01567674
##  beta : 0.008068444
##  gamma: 0.4392594
## 
## Coefficients:
##            [,1]
## a   875.5123349
## b     1.9568538
## s1    0.9301067
## s2    0.8613974
## s3    0.8741871
## s4    0.9798006
## s5    0.9624445
## s6    1.0964284
## s7    1.2846348
## s8    1.3110818
## s9    1.0004965
## s10   0.9987417
## s11   0.8628932
## s12   0.9793806

  基于R最优拟合原则得到平滑系数 α \alpha α=0.01567674, β \beta β=0.008068444, γ \gamma γ=0.4392594。经迭代得到三个参数的最后迭代值: a ( t ) a(t) a(t)=875.5123349, b ( t ) b(t) b(t)=1.9568538,参数 c ( t ) c(t) c(t)的最后12个月估计值对应的是12个月的季节指数,见表1。

  该序列向前任意 k k k期的预测值为:

x ^ t + k = ( 875.512 + 1.967 k ) S j , ∀ k ≥ 1 \hat x_{t+k}=(875.512+1.967k)S_j,\forall k≥1 x^t+k=(875.512+1.967k)Sj,k1

  式中, j j j t + k t+k t+k期对应的季节。

3 Holt-Winters三参数指数平滑乘法模型预测

  运行程序:

library(forecast)
fore1=forecast::forecast(fit1,h=36)
fore1$mean

  运行结果:

##            Jan       Feb       Mar       Apr       May       Jun       Jul
## 1977  816.1400  757.5353  770.4935  865.4968  852.0489  972.8099 1142.3105
## 1978  837.9810  777.7629  791.0214  888.5047  874.6492  998.5565 1172.4766
## 1979  859.8220  797.9904  811.5493  911.5126  897.2496 1024.3031 1202.6427
##            Aug       Sep       Oct       Nov       Dec
## 1977 1168.3931  893.5675  893.9546  774.0477  880.4578
## 1978 1199.1802  917.0614  917.4073  794.3104  903.4559
## 1979 1229.9674  940.5553  940.8600  814.5731  926.4540

 运行程序:

plot(fore1,lty=2,sub='图1 入住房间数序列Holt-Winters三参数指数平滑预测效果图')
lines(fore1$fitted,col=4)

   运行结果:

图1 Holt-Winters三参数指数平滑乘法模型预测效果

这篇关于时间序列分析实战(四):Holt-Winters建模及预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/753854

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

uva 10131 最长子序列

题意: 给大象的体重和智商,求体重按从大到小,智商从高到低的最长子序列,并输出路径。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vect

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud