时间序列分析——自回归移动平均(ARMA)模型

2024-02-27 11:38

本文主要是介绍时间序列分析——自回归移动平均(ARMA)模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    一、时间序列与ARMA模型

    自回归滑动平均模型(ARMA模型,Auto-Regression and Moving Average Model)是研究时间序列的重要方法,由自回归模型(AR模型)与滑动平均模型(MA模型)为基础“混合”而成,具有适用范围广、预测误差小的特点。

    一般p阶自回归过程AR(p)是:

        (1-1)

其中{}为白噪声,为自回归模型的参数。若用滞后算子L表示,则式(1-1)可以用滞后算子的p阶多项式来描述。

        (1-2)

其中,称为特征多项式或自回归算子。

    如果时序{}满足方程:

        (1-3)

则称{}为q阶滑动平均过程,简写为MA(q)。其中{}为白噪声,为滑动平均模型的参数。

    自回归移动平均过程具有随机性的特点,它包括了两个不同的部分,即自回归、移动平均。如果前p代表一部分的阶数值的上限值,用q代表后一部分的阶数值的上限值,那么自回归滑动平均过程就可以表示为ARMA(p,q)。具体表达式如下:

        (1-4)

其中{}为白噪声,为自回归模型的参数,为滑动平均模型的参数。

    二、ARMA模型的建立

    ARMA建模步骤

    (1)对输入的数据进行判断,判断其是否为平稳非纯随机序列,若平稳则直接进入步骤2;若不平稳则进行数据处理,处理后才能进入步骤2。

    (2)通过自相关和偏自相关函数,并结合AIC或BIC准则对建立的模型进行模型识别和定阶。

    (3)完成模型识别和定阶后,进入模型的参数估计阶段。

    (4)完成参数估计后,对拟合的模型进行适应性检验。如果拟合模型通过检验,则开始进行预测阶段。若模型检验不通过,则重新进行模型识别和检验,即重复步骤2,重新选择模型。

    (5)最后,利用适应性高的拟合模型,来预测序列的未来变化趋势。


    数据的平稳性检验与处理

    假如时间序列符合下列要求:(1)对任意时间t,其均值恒为常数;(2)对于任意的时间t与s,此时间序列的相关系数是由两个时间点之间的时间段决定的,两个时间点的起始点不会造成任何影响。这样的时间序列就是平稳时间序列。

    若一个AR过程是一个平稳过程,则其特征方程的根绝对值应在单位圆之外;而MA过程包含一组有限的、平稳的白噪声的线性组合,因此,MA过程是“天生”平稳的。ARMA模型可以看成是AR模型和MA模型的组合,而MA过程必定是平稳的。所以,ARMA模型的平稳性只需检验AR部分的平稳性。

    平稳性检验的方法有数据图、逆序检验、游程检验、单位根检验、DF检验、ADF检验等。

    在实际中,常常会遇到输入的时间序列经检验是非平稳的,这样就无法采用ARMA模型,通常的处理方法是采用差分的方法将它们变换为平稳的。经差分后,如果时间序列检验为平稳,就对差分后的时间序列进行处理,便可建立对应的平稳随机过程或模型。一个非平稳时间序列接受了d次差分处理并成为平稳序列时,就能够用一个平稳的ARMA(p,q)模型当作其对应的模型,则称该原始时间序列是一个自回归积分滑动平均时间序列,表示成ARIMA(p,d,q)

    模型识别和定阶

    模型的识别方法一般有两种,一种是自相关函数(ACF),另一种是偏自相关函数(PACF)。这两种方法是识别ARMA模型最有效的方法。可以采用两种函数的截尾性质来判断该模型的类型。


    使用自相关函数和偏自相关函数的截尾来判断模型为ARMA模型时,并不能确定p和q的阶数,为了比较精确的确定p和q的阶数,就必须与常用的定阶准则联合起来应用。如今应用最为广泛的是AIC(最小信息量准则(A-Information Criterion))和BIC准则。

    AIC准则是拟合精度和参数个数的加权函数,使AIC函数达到最小值的模型被认为是最优模型。设{}为一时间序列的样本,我们用AR(n)模型来描述它。是拟合残差方差,定义AIC准则函数如下:

        (2-1)

        (2-2)

其中M(N)等于 或 ,我们便取为最佳自回归模型阶数。

    BIC准则定义如下:

        (2-3)

其中,n为参数个数。若某一阶数满足

        (2-4)

其中M(N)等于 或 ,则为最佳系数。

    模型参数估计和适应性检验

    任何ARMA或MA过程可以用一个无限阶的AR过程表示,所以如果选择了一个不合适的模型,但只要模型的阶数足够高,它仍然能够比较好地逼近被建模的随机过程。在这三种参数模型中,AR模型得到了普遍应用,其原因是AR模型的参数计算过程是线性方程,比较简便。MA模型一般需要数量很多的参数;ARMA模型虽然所需的参数数量最少,但参数估计的算法是非线性方程组,其运算远比AR模型复杂。再考虑到任意ARMA或MA信号模型可以用无限阶或阶数足够大的AR模型来表示,我们就将ARMA模型转换为AR模型,并用Bury递推算法求解参数。详见点击打开链接。

这篇关于时间序列分析——自回归移动平均(ARMA)模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/752270

相关文章

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

使用Python实现在PDF中添加、导入、复制、移动与删除页面

《使用Python实现在PDF中添加、导入、复制、移动与删除页面》在日常办公和自动化任务中,我们经常需要对PDF文件进行页面级的编辑,使用Python,你可以轻松实现这些操作,而无需依赖AdobeAc... 目录1. 向 PDF 添加空白页2. 从另一个 PDF 导入页面3. 删除 PDF 中的页面4. 在

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的