时间序列分析——自回归移动平均(ARMA)模型

2024-02-27 11:38

本文主要是介绍时间序列分析——自回归移动平均(ARMA)模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    一、时间序列与ARMA模型

    自回归滑动平均模型(ARMA模型,Auto-Regression and Moving Average Model)是研究时间序列的重要方法,由自回归模型(AR模型)与滑动平均模型(MA模型)为基础“混合”而成,具有适用范围广、预测误差小的特点。

    一般p阶自回归过程AR(p)是:

        (1-1)

其中{}为白噪声,为自回归模型的参数。若用滞后算子L表示,则式(1-1)可以用滞后算子的p阶多项式来描述。

        (1-2)

其中,称为特征多项式或自回归算子。

    如果时序{}满足方程:

        (1-3)

则称{}为q阶滑动平均过程,简写为MA(q)。其中{}为白噪声,为滑动平均模型的参数。

    自回归移动平均过程具有随机性的特点,它包括了两个不同的部分,即自回归、移动平均。如果前p代表一部分的阶数值的上限值,用q代表后一部分的阶数值的上限值,那么自回归滑动平均过程就可以表示为ARMA(p,q)。具体表达式如下:

        (1-4)

其中{}为白噪声,为自回归模型的参数,为滑动平均模型的参数。

    二、ARMA模型的建立

    ARMA建模步骤

    (1)对输入的数据进行判断,判断其是否为平稳非纯随机序列,若平稳则直接进入步骤2;若不平稳则进行数据处理,处理后才能进入步骤2。

    (2)通过自相关和偏自相关函数,并结合AIC或BIC准则对建立的模型进行模型识别和定阶。

    (3)完成模型识别和定阶后,进入模型的参数估计阶段。

    (4)完成参数估计后,对拟合的模型进行适应性检验。如果拟合模型通过检验,则开始进行预测阶段。若模型检验不通过,则重新进行模型识别和检验,即重复步骤2,重新选择模型。

    (5)最后,利用适应性高的拟合模型,来预测序列的未来变化趋势。


    数据的平稳性检验与处理

    假如时间序列符合下列要求:(1)对任意时间t,其均值恒为常数;(2)对于任意的时间t与s,此时间序列的相关系数是由两个时间点之间的时间段决定的,两个时间点的起始点不会造成任何影响。这样的时间序列就是平稳时间序列。

    若一个AR过程是一个平稳过程,则其特征方程的根绝对值应在单位圆之外;而MA过程包含一组有限的、平稳的白噪声的线性组合,因此,MA过程是“天生”平稳的。ARMA模型可以看成是AR模型和MA模型的组合,而MA过程必定是平稳的。所以,ARMA模型的平稳性只需检验AR部分的平稳性。

    平稳性检验的方法有数据图、逆序检验、游程检验、单位根检验、DF检验、ADF检验等。

    在实际中,常常会遇到输入的时间序列经检验是非平稳的,这样就无法采用ARMA模型,通常的处理方法是采用差分的方法将它们变换为平稳的。经差分后,如果时间序列检验为平稳,就对差分后的时间序列进行处理,便可建立对应的平稳随机过程或模型。一个非平稳时间序列接受了d次差分处理并成为平稳序列时,就能够用一个平稳的ARMA(p,q)模型当作其对应的模型,则称该原始时间序列是一个自回归积分滑动平均时间序列,表示成ARIMA(p,d,q)

    模型识别和定阶

    模型的识别方法一般有两种,一种是自相关函数(ACF),另一种是偏自相关函数(PACF)。这两种方法是识别ARMA模型最有效的方法。可以采用两种函数的截尾性质来判断该模型的类型。


    使用自相关函数和偏自相关函数的截尾来判断模型为ARMA模型时,并不能确定p和q的阶数,为了比较精确的确定p和q的阶数,就必须与常用的定阶准则联合起来应用。如今应用最为广泛的是AIC(最小信息量准则(A-Information Criterion))和BIC准则。

    AIC准则是拟合精度和参数个数的加权函数,使AIC函数达到最小值的模型被认为是最优模型。设{}为一时间序列的样本,我们用AR(n)模型来描述它。是拟合残差方差,定义AIC准则函数如下:

        (2-1)

        (2-2)

其中M(N)等于 或 ,我们便取为最佳自回归模型阶数。

    BIC准则定义如下:

        (2-3)

其中,n为参数个数。若某一阶数满足

        (2-4)

其中M(N)等于 或 ,则为最佳系数。

    模型参数估计和适应性检验

    任何ARMA或MA过程可以用一个无限阶的AR过程表示,所以如果选择了一个不合适的模型,但只要模型的阶数足够高,它仍然能够比较好地逼近被建模的随机过程。在这三种参数模型中,AR模型得到了普遍应用,其原因是AR模型的参数计算过程是线性方程,比较简便。MA模型一般需要数量很多的参数;ARMA模型虽然所需的参数数量最少,但参数估计的算法是非线性方程组,其运算远比AR模型复杂。再考虑到任意ARMA或MA信号模型可以用无限阶或阶数足够大的AR模型来表示,我们就将ARMA模型转换为AR模型,并用Bury递推算法求解参数。详见点击打开链接。

这篇关于时间序列分析——自回归移动平均(ARMA)模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/752270

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结