时间序列分析——自回归移动平均(ARMA)模型

2024-02-27 11:38

本文主要是介绍时间序列分析——自回归移动平均(ARMA)模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    一、时间序列与ARMA模型

    自回归滑动平均模型(ARMA模型,Auto-Regression and Moving Average Model)是研究时间序列的重要方法,由自回归模型(AR模型)与滑动平均模型(MA模型)为基础“混合”而成,具有适用范围广、预测误差小的特点。

    一般p阶自回归过程AR(p)是:

        (1-1)

其中{}为白噪声,为自回归模型的参数。若用滞后算子L表示,则式(1-1)可以用滞后算子的p阶多项式来描述。

        (1-2)

其中,称为特征多项式或自回归算子。

    如果时序{}满足方程:

        (1-3)

则称{}为q阶滑动平均过程,简写为MA(q)。其中{}为白噪声,为滑动平均模型的参数。

    自回归移动平均过程具有随机性的特点,它包括了两个不同的部分,即自回归、移动平均。如果前p代表一部分的阶数值的上限值,用q代表后一部分的阶数值的上限值,那么自回归滑动平均过程就可以表示为ARMA(p,q)。具体表达式如下:

        (1-4)

其中{}为白噪声,为自回归模型的参数,为滑动平均模型的参数。

    二、ARMA模型的建立

    ARMA建模步骤

    (1)对输入的数据进行判断,判断其是否为平稳非纯随机序列,若平稳则直接进入步骤2;若不平稳则进行数据处理,处理后才能进入步骤2。

    (2)通过自相关和偏自相关函数,并结合AIC或BIC准则对建立的模型进行模型识别和定阶。

    (3)完成模型识别和定阶后,进入模型的参数估计阶段。

    (4)完成参数估计后,对拟合的模型进行适应性检验。如果拟合模型通过检验,则开始进行预测阶段。若模型检验不通过,则重新进行模型识别和检验,即重复步骤2,重新选择模型。

    (5)最后,利用适应性高的拟合模型,来预测序列的未来变化趋势。


    数据的平稳性检验与处理

    假如时间序列符合下列要求:(1)对任意时间t,其均值恒为常数;(2)对于任意的时间t与s,此时间序列的相关系数是由两个时间点之间的时间段决定的,两个时间点的起始点不会造成任何影响。这样的时间序列就是平稳时间序列。

    若一个AR过程是一个平稳过程,则其特征方程的根绝对值应在单位圆之外;而MA过程包含一组有限的、平稳的白噪声的线性组合,因此,MA过程是“天生”平稳的。ARMA模型可以看成是AR模型和MA模型的组合,而MA过程必定是平稳的。所以,ARMA模型的平稳性只需检验AR部分的平稳性。

    平稳性检验的方法有数据图、逆序检验、游程检验、单位根检验、DF检验、ADF检验等。

    在实际中,常常会遇到输入的时间序列经检验是非平稳的,这样就无法采用ARMA模型,通常的处理方法是采用差分的方法将它们变换为平稳的。经差分后,如果时间序列检验为平稳,就对差分后的时间序列进行处理,便可建立对应的平稳随机过程或模型。一个非平稳时间序列接受了d次差分处理并成为平稳序列时,就能够用一个平稳的ARMA(p,q)模型当作其对应的模型,则称该原始时间序列是一个自回归积分滑动平均时间序列,表示成ARIMA(p,d,q)

    模型识别和定阶

    模型的识别方法一般有两种,一种是自相关函数(ACF),另一种是偏自相关函数(PACF)。这两种方法是识别ARMA模型最有效的方法。可以采用两种函数的截尾性质来判断该模型的类型。


    使用自相关函数和偏自相关函数的截尾来判断模型为ARMA模型时,并不能确定p和q的阶数,为了比较精确的确定p和q的阶数,就必须与常用的定阶准则联合起来应用。如今应用最为广泛的是AIC(最小信息量准则(A-Information Criterion))和BIC准则。

    AIC准则是拟合精度和参数个数的加权函数,使AIC函数达到最小值的模型被认为是最优模型。设{}为一时间序列的样本,我们用AR(n)模型来描述它。是拟合残差方差,定义AIC准则函数如下:

        (2-1)

        (2-2)

其中M(N)等于 或 ,我们便取为最佳自回归模型阶数。

    BIC准则定义如下:

        (2-3)

其中,n为参数个数。若某一阶数满足

        (2-4)

其中M(N)等于 或 ,则为最佳系数。

    模型参数估计和适应性检验

    任何ARMA或MA过程可以用一个无限阶的AR过程表示,所以如果选择了一个不合适的模型,但只要模型的阶数足够高,它仍然能够比较好地逼近被建模的随机过程。在这三种参数模型中,AR模型得到了普遍应用,其原因是AR模型的参数计算过程是线性方程,比较简便。MA模型一般需要数量很多的参数;ARMA模型虽然所需的参数数量最少,但参数估计的算法是非线性方程组,其运算远比AR模型复杂。再考虑到任意ARMA或MA信号模型可以用无限阶或阶数足够大的AR模型来表示,我们就将ARMA模型转换为AR模型,并用Bury递推算法求解参数。详见点击打开链接。

这篇关于时间序列分析——自回归移动平均(ARMA)模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/752270

相关文章

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Spring、Spring Boot、Spring Cloud 的区别与联系分析

《Spring、SpringBoot、SpringCloud的区别与联系分析》Spring、SpringBoot和SpringCloud是Java开发中常用的框架,分别针对企业级应用开发、快速开... 目录1. Spring 框架2. Spring Boot3. Spring Cloud总结1. Sprin