时间序列分析——自回归移动平均(ARMA)模型

2024-02-27 11:38

本文主要是介绍时间序列分析——自回归移动平均(ARMA)模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    一、时间序列与ARMA模型

    自回归滑动平均模型(ARMA模型,Auto-Regression and Moving Average Model)是研究时间序列的重要方法,由自回归模型(AR模型)与滑动平均模型(MA模型)为基础“混合”而成,具有适用范围广、预测误差小的特点。

    一般p阶自回归过程AR(p)是:

        (1-1)

其中{}为白噪声,为自回归模型的参数。若用滞后算子L表示,则式(1-1)可以用滞后算子的p阶多项式来描述。

        (1-2)

其中,称为特征多项式或自回归算子。

    如果时序{}满足方程:

        (1-3)

则称{}为q阶滑动平均过程,简写为MA(q)。其中{}为白噪声,为滑动平均模型的参数。

    自回归移动平均过程具有随机性的特点,它包括了两个不同的部分,即自回归、移动平均。如果前p代表一部分的阶数值的上限值,用q代表后一部分的阶数值的上限值,那么自回归滑动平均过程就可以表示为ARMA(p,q)。具体表达式如下:

        (1-4)

其中{}为白噪声,为自回归模型的参数,为滑动平均模型的参数。

    二、ARMA模型的建立

    ARMA建模步骤

    (1)对输入的数据进行判断,判断其是否为平稳非纯随机序列,若平稳则直接进入步骤2;若不平稳则进行数据处理,处理后才能进入步骤2。

    (2)通过自相关和偏自相关函数,并结合AIC或BIC准则对建立的模型进行模型识别和定阶。

    (3)完成模型识别和定阶后,进入模型的参数估计阶段。

    (4)完成参数估计后,对拟合的模型进行适应性检验。如果拟合模型通过检验,则开始进行预测阶段。若模型检验不通过,则重新进行模型识别和检验,即重复步骤2,重新选择模型。

    (5)最后,利用适应性高的拟合模型,来预测序列的未来变化趋势。


    数据的平稳性检验与处理

    假如时间序列符合下列要求:(1)对任意时间t,其均值恒为常数;(2)对于任意的时间t与s,此时间序列的相关系数是由两个时间点之间的时间段决定的,两个时间点的起始点不会造成任何影响。这样的时间序列就是平稳时间序列。

    若一个AR过程是一个平稳过程,则其特征方程的根绝对值应在单位圆之外;而MA过程包含一组有限的、平稳的白噪声的线性组合,因此,MA过程是“天生”平稳的。ARMA模型可以看成是AR模型和MA模型的组合,而MA过程必定是平稳的。所以,ARMA模型的平稳性只需检验AR部分的平稳性。

    平稳性检验的方法有数据图、逆序检验、游程检验、单位根检验、DF检验、ADF检验等。

    在实际中,常常会遇到输入的时间序列经检验是非平稳的,这样就无法采用ARMA模型,通常的处理方法是采用差分的方法将它们变换为平稳的。经差分后,如果时间序列检验为平稳,就对差分后的时间序列进行处理,便可建立对应的平稳随机过程或模型。一个非平稳时间序列接受了d次差分处理并成为平稳序列时,就能够用一个平稳的ARMA(p,q)模型当作其对应的模型,则称该原始时间序列是一个自回归积分滑动平均时间序列,表示成ARIMA(p,d,q)

    模型识别和定阶

    模型的识别方法一般有两种,一种是自相关函数(ACF),另一种是偏自相关函数(PACF)。这两种方法是识别ARMA模型最有效的方法。可以采用两种函数的截尾性质来判断该模型的类型。


    使用自相关函数和偏自相关函数的截尾来判断模型为ARMA模型时,并不能确定p和q的阶数,为了比较精确的确定p和q的阶数,就必须与常用的定阶准则联合起来应用。如今应用最为广泛的是AIC(最小信息量准则(A-Information Criterion))和BIC准则。

    AIC准则是拟合精度和参数个数的加权函数,使AIC函数达到最小值的模型被认为是最优模型。设{}为一时间序列的样本,我们用AR(n)模型来描述它。是拟合残差方差,定义AIC准则函数如下:

        (2-1)

        (2-2)

其中M(N)等于 或 ,我们便取为最佳自回归模型阶数。

    BIC准则定义如下:

        (2-3)

其中,n为参数个数。若某一阶数满足

        (2-4)

其中M(N)等于 或 ,则为最佳系数。

    模型参数估计和适应性检验

    任何ARMA或MA过程可以用一个无限阶的AR过程表示,所以如果选择了一个不合适的模型,但只要模型的阶数足够高,它仍然能够比较好地逼近被建模的随机过程。在这三种参数模型中,AR模型得到了普遍应用,其原因是AR模型的参数计算过程是线性方程,比较简便。MA模型一般需要数量很多的参数;ARMA模型虽然所需的参数数量最少,但参数估计的算法是非线性方程组,其运算远比AR模型复杂。再考虑到任意ARMA或MA信号模型可以用无限阶或阶数足够大的AR模型来表示,我们就将ARMA模型转换为AR模型,并用Bury递推算法求解参数。详见点击打开链接。

这篇关于时间序列分析——自回归移动平均(ARMA)模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/752270

相关文章

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

go中的时间处理过程

《go中的时间处理过程》:本文主要介绍go中的时间处理过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 获取当前时间2 获取当前时间戳3 获取当前时间的字符串格式4 相互转化4.1 时间戳转时间字符串 (int64 > string)4.2 时间字符串转时间

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺