OpenCV开发笔记(七十五):相机标定矫正中使用remap重映射进行畸变矫正

本文主要是介绍OpenCV开发笔记(七十五):相机标定矫正中使用remap重映射进行畸变矫正,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

若该文为原创文章,转载请注明原文出处
本文章博客地址:https://blog.csdn.net/qq21497936/article/details/136293833
各位读者,知识无穷而人力有穷,要么改需求,要么找专业人士,要么自己研究
红胖子(红模仿)的博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬结合等等)持续更新中…(点击传送门)

OpenCV开发专栏(点击传送门)

上一篇:《OpenCV开发笔记(七十四):OpenCV3.4.1+ffmpeg3.4.8交叉编译移植到海思平台Hi35xx平台》
下一篇:持续补充中…


前言

  相机标定,重映射可以进行插值映射从而矫正图像,这是一种方法,也有矩阵映射方法,本篇使用重映射方式解说畸变矫正的计算原理。


Demo

  横向纵向区域固定拉伸:
  在这里插入图片描述

  横向纵向拉伸:
  在这里插入图片描述

  右下角拉伸:
  在这里插入图片描述


相机畸变矫正

  标定相机需要做两件事:

  • 纠正畸变的影响
  • 根据图像重构三位场景

纠正畸变的影响

  Opencv提供了可以直接使用的矫正算法,即通过输入原始图像和由函数cv::calibrateCamera()得到的畸变系数,生成校正后的图像。(注意:这里可使用用cv::undistort()使用该算法直接完成所需任务,也可以使用函数cv::iniitUndistorRectifyMap()和cv::remap()来更有效的处理。


矫正映射remap(畸变映射)

  当进行图像矫正时,必须指定输入图像的每个像素在输出图像中移动到的位置,成为“矫正映射”(畸变映射)。

双通道浮点数表示方式

  N x M的矩阵A中,重映射由双通道浮点数的N x M的矩阵B表示,对于图像A中的任意一点aPoint(i, j),映射为b1Point(i’, j’)和b2Point(i’, j’),在A中假设i=2,j=3,那么(假设重映射之后4.5,5.5)在B1中b1Point(i’, j’)值为4.5,b2Point(i’, j’)值为5.5,由于坐标是浮点数,那么需要插值得到整数位置以及中间过渡的区域颜色(平滑处理)。
  在这里插入图片描述

双矩阵浮点数表示方式

  双矩阵浮点数表示,N x M的矩阵A中,重映射由一对N x M的矩阵B和C描述,这里所有的N x M矩阵都是单通道浮点矩阵,在A中的点aPoint(i, j),重映射矩阵B中的点bPoint(i,j)存储了重映射后的i’ (映射后的i坐标), 重映射矩阵C中的点cPoint(i,j)存储了重映射后的j’(映射后的j坐标)。
  在这里插入图片描述

定点表示方式

  映射由双通道有符号整数矩阵(即CV_16SC2类型)表示。该方式与双通道浮点数表示方式相同,但使用此格式要快得多(笔者理解:由浮点数插值改为整数插值,会要快一些,但是肯定双通道浮点数的表示方式图像效果会稍微好一些)。
  在这里插入图片描述


remap核心关键

  在于得到插值的坐标系来映射新位置的x和y位置,要渐近等,所以本方法的核心关键在于得到标定后的矩阵,得到映射矩阵的方式可以自己写算法,也可以使用其他方式,后续文章继续深入这块。


函数原型

void remap( InputArray src,OutputArray dst,InputArray map1,InputArray map2,int interpolation,int borderMode = BORDER_CONSTANT,const Scalar& borderValue = Scalar());
  • 参数一:InputArray类型的src,一般为cv::Mat;
  • 参数二:OutputArray类型的dst,目标图像。它的大小与map1相同,类型与src相同。
  • 参数三:InputArray类型的map1,它有两种可能的表示对象:表示点(x,y)的第一个映射或者表示CV_16SC2 , CV_32FC1 或CV_32FC2类型的x值。
  • 参数四:InputArray类型的map2,它也有两种可能的表示对象,而且他是根据map1来确定表示哪种对象。若map1表示点(x,y)时,这个参数不代表任何值,否则,表示CV_16UC1 , rCV_32FC1类型的y值(第二个值)。
  • 参数五:int类型的interpolation,使用的插值方法;
  • 参数六:int类型的borderMode,边界处理方式;
  • 参数七:Scalar类型的borderValue,重映射后,离群点的背景,需要broderMode设置为BORDER_CONSTRANT时才有效。(离群点:当图片大小为400x300,那么对应的map1和map2范围为0399、0299,小于0或者大于299的则为离散点,使用该颜色填充);

Demo源码

void OpenCVManager::testRemap2()
{std::string srcFilePath = "D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/25.jpg";// 步骤一:读取文件cv::Mat srcMat = cv::imread(srcFilePath);// 缩放一下int width = 400;int height = 400;cv::resize(srcMat, srcMat, cv::Size(width, height));// 步骤二:映射矩阵cv::Mat mapX;cv::Mat mapY;mapX.create(srcMat.size(), CV_32FC1);mapY.create(srcMat.size(), CV_32FC1);// 算法:这里400x400,将0~100放大至0~200,将100~400映射为200~400// 算法:这里400x400,将0~100放大至0~200,将100~400映射为200~400
#if 0for(int row = 0; row < srcMat.rows; row++){for(int col = 0; col < srcMat.cols; col++){
//            if(true)if(col < 200){mapX.at<float>(row, col) = static_cast<float>(col * 1.0f / 2);}else{mapX.at<float>(row, col) = static_cast<float>(100 + (col - 200) * 1.0f / 2 * 3);}
//            if(true)if(row < 200){mapY.at<float>(row, col) = static_cast<float>(row * 1.0f / 2);}else{mapY.at<float>(row, col) = static_cast<float>(100 + (row - 200) * 1.0f / 2 * 3);}}}
#endif
#if 0for(int row = 0; row < srcMat.rows; row++){for(int col = 0; col < srcMat.cols; col++){// 这里是 0~200 缩放为 0~100 缩小                               // 比例系数if(col == 0){mapX.at<float>(row, col) = static_cast<float>(col);}else if(col < 200){mapX.at<float>(row, col) = static_cast<float>(col * 1.0f / 2 * (col * 1.0f / 199));}else{mapX.at<float>(row, col) = static_cast<float>(col * 1.0f / 2 * (col * 1.0f / 199));}if(row == 0){mapY.at<float>(row, col) = static_cast<float>(row);}else if(row < 200){mapY.at<float>(row, col) = static_cast<float>(row * 1.0f / 2 * (row * 1.0f / 199));}else{mapY.at<float>(row, col) = static_cast<float>(row * 1.0f / 2 * (row * 1.0f / 199));}}}
#endif
#if 1for(int row = 0; row < srcMat.rows; row++){for(int col = 0; col < srcMat.cols; col++){//                                                             比例系数 0~1.0(400~800)/400mapX.at<float>(row, col) = static_cast<float>(col * ((col + 1 + 400) * 1.0f / 800));mapY.at<float>(row, col) = static_cast<float>(row * ((row + 1 + 400) * 1.0f / 800));}}
#endifcv::Mat dstMat;cv::remap(srcMat,dstMat,mapX,mapY,CV_INTER_LINEAR,cv::BORDER_CONSTANT,cv::Scalar(255, 0, 0));cv::imshow("1", srcMat);cv::imshow(_windowTitle.toStdString(), dstMat);cv::waitKey(0);
}

对应工程模板v1.66.0

  在这里插入图片描述


上一篇:《OpenCV开发笔记(七十四):OpenCV3.4.1+ffmpeg3.4.8交叉编译移植到海思平台Hi35xx平台》
下一篇:持续补充中…


本文章博客地址:https://blog.csdn.net/qq21497936/article/details/136293833

这篇关于OpenCV开发笔记(七十五):相机标定矫正中使用remap重映射进行畸变矫正的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/749940

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将