pandas库入门之数据特征分析 北理工嵩天老师python数据分析与展示 单元8随堂笔记

本文主要是介绍pandas库入门之数据特征分析 北理工嵩天老师python数据分析与展示 单元8随堂笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pandas库入门之数据特征分析 北理工嵩天老师python数据分析与展示 单元8随堂笔记

1. 数据的排序

1.1 对一组数据的理解

一组数据表达一个或多个含义
摘要:在数据形成过程中一些结果。即有损地提取数据特诊的过程
通过摘要我们能获得数据的:
* 基本统计(含排序)
* 分布/累计统计
* 数据特征(相关性,周期性等)
* 数据挖掘(形成知识)

1.2 Pandas库的数据排序

.sort_index()方法在指定轴上根据索引进行排序,默认升序。
.sort_index(axis=0,ascending=True) ascending指递增排序。

import pandas as pdimport numpy as npb = pd.DataFrame(np.arange(20).reshape(4,5),index=['c','a','d','b'])
b
01234
c01234
a56789
d1011121314
b1516171819
c=b.sort_index()  #默认在0轴进行操作
c
01234
a56789
b1516171819
c01234
d1011121314
c=c.sort_index(axis=1 ,ascending=False)
c
43210
a98765
b1918171615
c43210
d1413121110

**.sort_values()方法在指定轴上根据数值进行排序,默认升序。
Series.sort_values(axis=0,ascending=True)
DataFrame.Sort_values(by,axis=0,ascending=True)
by: axis轴上的某个索引或索引列表

c = b.sort_values(2,ascending=False) #按第二列数据降序排列
c
01234
b1516171819
d1011121314
a56789
c01234
c = c.sort_values('a',axis=1,ascending=False)
c
43210
b1918171615
d1413121110
a98765
c43210

NaN统一放到排序的末尾

数据的基本统计分析

基本的统计分析函数,适用于Series和DataFrame类型

在这里插入图片描述在这里插入图片描述

适用于Series类型

在这里插入图片描述

import pandas as pda = pd.Series([9,8,7,6],index=['a','b','c','d'])
a
a    9
b    8
c    7
d    6
dtype: int64
a.describe()
count    4.000000
mean     7.500000
std      1.290994
min      6.000000
25%      6.750000
50%      7.500000
75%      8.250000
max      9.000000
dtype: float64
type(a.describe())
pandas.core.series.Series
a.describe()['count']
4.0
a.describe()['max']
9.0
b = pd.DataFrame(np.arange(20).reshape(4,5),index=['c','a','d','b'])
b.describe()
01234
count4.0000004.0000004.0000004.0000004.000000
mean7.5000008.5000009.50000010.50000011.500000
std6.4549726.4549726.4549726.4549726.454972
min0.0000001.0000002.0000003.0000004.000000
25%3.7500004.7500005.7500006.7500007.750000
50%7.5000008.5000009.50000010.50000011.500000
75%11.25000012.25000013.25000014.25000015.250000
max15.00000016.00000017.00000018.00000019.000000
type(b.describe())
pandas.core.frame.DataFrame
b.describe().ix['max']  #  以Series对象返回
D:\PYTHON\anaconda\lib\site-packages\ipykernel_launcher.py:1: DeprecationWarning: 
.ix is deprecated. Please use
.loc for label based indexing or
.iloc for positional indexingSee the documentation here:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer-is-deprecated"""Entry point for launching an IPython kernel.0    15.0
1    16.0
2    17.0
3    18.0
4    19.0
Name: max, dtype: float64

数据的累计统计分析

适用于Series 和 DataFrame类型

在这里插入图片描述

b = pd.DataFrame(np.arange(20).reshape(4,5),index=['c','a','d','b'])
b
01234
c01234
a56789
d1011121314
b1516171819
b.cumsum()  #以列为单位,计算每个元素前面的累加和
01234
c01234
a5791113
d1518212427
b3034384246
b.cumprod()  #乘积
01234
c01234
a06142436
d066168312504
b01056285656169576
b.cummin()
01234
c01234
a01234
d01234
b01234
b.cummax()
01234
c01234
a56789
d1011121314
b1516171819

适用于Series和DataFrame类型,滚动计算(窗口计算)。

依次计算w相邻的元素的统计值
在这里插入图片描述

b
01234
c01234
a56789
d1011121314
b1516171819
b.rolling(2).sum()# 在纵向上以两个元素为单位,做相关的求和运算。
01234
cNaNNaNNaNNaNNaN
a5.07.09.011.013.0
d15.017.019.021.023.0
b25.027.029.031.033.0
b.rolling(3).sum()
01234
cNaNNaNNaNNaNNaN
aNaNNaNNaNNaNNaN
d15.018.021.024.027.0
b30.033.036.039.042.0

数据的相关分析

相关分析: 两个事物,表示为X,Y,如何判断他们之间存在相关性?

相关性

X增大,Y增大,两个变量正相关。
X增大,Y减小,两个变量负相关。
X增大,Y无视,两个变量不相关。

如何度量俩个变量的相关性?

协方差方法:

在这里插入图片描述
协方差>0,X和Y正相关。
协方差<0,X和Y负相关。
协方差=0,X和Y独立无关。

Peason相关系数

在这里插入图片描述
r的取值范围[-1,1].
|r|:
0.8-1.0 极强相关
0.6-0.8 强相关
0.4-0.6 中等程度相关
0.2-0.4 弱相关
0-0.2 极弱相关或不相关

相关分析函数

在这里插入图片描述

hprice = pd.Series([3.84,22.93,12.75,22.6,12.33] ,index=['2008','2009','2010','2011','2012'])m2 = pd.Series([8.18,18.38,9.13,7.82,6.69],index=['2008','2009','2010','2011','2012'])hprice.corr(m2)
0.5323702649465167

这篇关于pandas库入门之数据特征分析 北理工嵩天老师python数据分析与展示 单元8随堂笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/749762

相关文章

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定