第6.3章:StarRocks查询加速——Bucket Shuffle Join

2024-02-26 07:28

本文主要是介绍第6.3章:StarRocks查询加速——Bucket Shuffle Join,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、StarRocks数据划分

1.1 分区

1.2 分桶

二、Bucket Shuffle Join实现原理

2.1 Bucket Shuffle Join概述

2.2 Bucket Shuffle Join工作原理

2.3 Bucket Shuffle Join规划规则

三、应用案例

注:本篇文章阐述的是StarRocks-3.2版本的Bucket Shuffle Join

一、StarRocks数据划分

   在介绍Bucket Shuffle Join之前,再回顾下StarRocks的数据划分及tablet多副本机制。

   StarRocks支持两层的数据划分,第一层是Range  Partition,第二层是Hash  Bucket(Tablet)。 StarRocks的数据表按照分区分桶规则,被水平切分成若干个数据分片(Tablet,也称作数据分桶 Bucket)存储在不同的be节点上,每个tablet都有多个副本(默认是3副本)。各个 Tablet 之间的数据没有交集,并且在物理上是独立存储的。Tablet 是数据移动、复制等操作的最小物理存储单元。 一个 Tablet 只属于一个数据分区(Partition),而一个 Partition 包含若干个 Tablet。

   下图说明 Table、Partition、Bucket(Tablet) 的关系:

  • Table按照Range的方式按照 date 字段进行分区,得到了 N 个Partition
  • 每个 Partition 通过相同的 Hash 方式将其中的数据划分为 M个Bucket(Tablet)
  • 从逻辑上来说,Bucket 1 可以包含 N 个 Partition 中划分得到的数据,比如下图中的 Tablet 11、Tablet 21、Tablet N1

1.1 分区

    逻辑概念,分区用于将数据划分成不同的区间,主要作用是将一张表按照分区键拆分成不同的管理单元。查询时,通过分区裁剪,可以减少扫描的数据量,显著优化查询性能。

1.2 分桶

    物理概念,StarRocks一般采用Hash算法作为分桶算法。在同一分区内,分桶键哈希值相同的数据会划分到同一个tablet(数据分片),tablet以多副本冗余的形式存储,是数据均衡和恢复的最⼩单位,数据导入和查询最终都下沉到所涉及的 tablet副本上。

二、Bucket Shuffle Join实现原理

2.1 Bucket Shuffle Join概述

   StarRocks支持的常规分布式Join方式包括了Shuffle Join和Broadcast Join,这两种join都会导致不小的网络开销。

  • Shuffle Join:会将 A、B 两表的数据根据哈希计算分散到集群的节点中,所以它的网络开销是A+B,内存开销是B。

  • Broadcast Join:如果根据数据分布,查询规划出A表有3个执行的HashJoinNode,那么需要将B表全量的发送到3个HashJoinNode,那么它的网络开销是3B,它的内存开销也是3B

        如下图:通过将B表的数据全量广播到A表的机器上,在A表的机器上进行Join操作,相比较于Shuffle join ,节省了A表数据Shuffle,但是B表的数据是全量广播,适合B表是个小表的场景。

  而Bucket Shuffle Join是在Broadcast的基础上进一步优化,将B表按照A表的分布方式,Shuffle到A表机器上进行Join操作,B表Shuffle的数据量全局只有一份,比Broadcast少传输了很多倍数量。所以它的网络开销是B,内存开销是B。

    在FE之中保存了StarRocks每个表的数据分布信息,如果join语句命中了表的数据分布列,应该使用数据分布信息来减少join语句的网络与内存开销,这就是Bucket Shuffle Join的思路来源。

2.2 Bucket Shuffle Join工作原理

   如下图展示了Bucket Shuffle Join的工作原理,sql语句是A表 join B表,并且join的等值表达式命中了A的数据分布列。而Bucket Shuffle Join会根据A表的数据分布信息,将B表的数据发送到对应的A表的数据存储计算节点。Bucket Shuffle Join的开销如下:

网络开销:Bucket Shuffle Join < min (Shuffle Join ,Broadcast Join ), 即:B < min(3B, A + B)

内存开销:Bucket Shuffle Join <= min (Shuffle Join ,Broadcast Join ), 即:B <= min(B, 3B)

  

     因此,和Shuffle Join、Broadcast Join相比较,Bucket Shuffle Join有着较为明显的性能优势,可以减少数据在节点间的传输耗时和Join时的内存开销,具备的优点有:

  •  Bucket Shuffle Join降低了网络和内存开销,使一些Join查询具有更好的性能,尤其是当FE能够执行左表的分区裁剪与桶裁剪时。
  • 与Colocate Join不同, Bucket Shuffle Join对于表的数据分布方式并没有侵入性,对用户来说是透明的(无感知的),对于表的数据分布没有强制性的要求,不容易导致数据倾斜的问题。
  • 可以为Join Reorder 提供更多可能分优化空间。

2.3 Bucket Shuffle Join规划规则

  • Bucket Shuffle Join 只生效于 Join 条件为等值的场景,原因与 Colocate Join 类似,它们都依赖 Hash 来计算确定的数据分布。

  • 在等值Join条件之中包含两张表的分桶列,当左表的分桶列为等值的Join条件时,它有很大概率会被规划为Bucket Shuffle Join。
  • 由于不同的数据类型的 Hash 值计算结果不同,所以 Bucket Shuffle Join 要求左表的分桶列的类型与右表等值 Join 列的类型需要保持一致,否则无法进行对应的规划。

  • Bucket Shuffle Join 只作用于StarRocks原生的OLAP表,对于ODBC,MySQL等外表,当其作为左表时是无法规划生效的。

  • 对于分区表,由于每一个分区的数据分布规则可能不同,所以Bucket Shuffle Join只能保证左表为单分区时生效。所以在SQL执行之中,需要尽量使用where条件使分区裁剪的策略能够生效。
  • 假如左表为Colocate的表,那么它每个分区的数据分布规则是确定的,Bucket Shuffle Join能在Colocate表上表现更好。

三、应用案例

   如果关联查询中Join等值表达式命中表 A 的分桶键 ,尤其是在表 A 和表 B 均是大表的情况下,可以设置 Join Hint 为 Bucket Shuffle Join。表 B 数据会按照表 A 数据的分布方式,Shuffle 到表 A 数据所在机器上,再进行 Join 操作。Bucket Shuffle Join 是在 Broadcast Join 的基础上进一步优化,Shuffle B 表的数据量全局只有一份,比 Broadcast Join 少传输了很多倍数据量。

    在FE进行分布式查询规划时,优先选择的顺序为 Colocate Join -> Bucket Shuffle Join -> Broadcast Join -> Shuffle Join。但是用户也可以通过显式 Hint来强制使用期望的 Join 类型,比如:

select k1 from t1 join [BUCKET] t2 on t1.k1 = t2.k2 group by t2.k2;

手动指定Join类型后,可以通过explain命令来查看Join是否为Bucket Shuffle Join:

ps: join hint 见文章: 分析查询 | StarRocks

参考文章:

Bucket Shuffle Join - Apache Doris

Apache Doris Join 优化原理介绍 - 掘金

这篇关于第6.3章:StarRocks查询加速——Bucket Shuffle Join的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/748085

相关文章

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

ural 1026. Questions and Answers 查询

1026. Questions and Answers Time limit: 2.0 second Memory limit: 64 MB Background The database of the Pentagon contains a top-secret information. We don’t know what the information is — you

Mybatis中的like查询

<if test="templateName != null and templateName != ''">AND template_name LIKE CONCAT('%',#{templateName,jdbcType=VARCHAR},'%')</if>

京东物流查询|开发者调用API接口实现

快递聚合查询的优势 1、高效整合多种快递信息。2、实时动态更新。3、自动化管理流程。 聚合国内外1500家快递公司的物流信息查询服务,使用API接口查询京东物流的便捷步骤,首先选择专业的数据平台的快递API接口:物流快递查询API接口-单号查询API - 探数数据 以下示例是参考的示例代码: import requestsurl = "http://api.tanshuapi.com/a

DAY16:什么是慢查询,导致的原因,优化方法 | undo log、redo log、binlog的用处 | MySQL有哪些锁

目录 什么是慢查询,导致的原因,优化方法 undo log、redo log、binlog的用处  MySQL有哪些锁   什么是慢查询,导致的原因,优化方法 数据库查询的执行时间超过指定的超时时间时,就被称为慢查询。 导致的原因: 查询语句比较复杂:查询涉及多个表,包含复杂的连接和子查询,可能导致执行时间较长。查询数据量大:当查询的数据量庞大时,即使查询本身并不复杂,也可能导致

oracle11.2g递归查询(树形结构查询)

转自: 一 二 简单语法介绍 一、树型表结构:节点ID 上级ID 节点名称二、公式: select 节点ID,节点名称,levelfrom 表connect by prior 节点ID=上级节点IDstart with 上级节点ID=节点值 oracle官网解说 开发人员:SQL 递归: 在 Oracle Database 11g 第 2 版中查询层次结构数据的快速

ElasticSearch的DSL查询⑤(ES数据聚合、DSL语法数据聚合、RestClient数据聚合)

目录 一、数据聚合 1.1 DSL实现聚合 1.1.1 Bucket聚合  1.1.2 带条件聚合 1.1.3 Metric聚合 1.1.4 总结 2.1 RestClient实现聚合 2.1.1 Bucket聚合 2.1.2 带条件聚合 2.2.3 Metric聚合 一、数据聚合 聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:

MySQL基础(7)- 多表查询

目录 一、笛卡尔积的错误与正确的多表查询 1.出现笛卡尔积错误 2.正确的多表查询:需要有连接条件 3.查询多个表中都存在的字段 4.SELECT和WHERE中使用表的别名 二、等值连接vs非等值连接、自连接vs非自连接 1.等值连接  vs  非等值连接 2.自连接  vs  非自连接 3.内连接  vs  外连接 4.UNION  和 UNION ALL的使用 5.7种J

PyInstaller问题解决 onnxruntime-gpu 使用GPU和CUDA加速模型推理

前言 在模型推理时,需要使用GPU加速,相关的CUDA和CUDNN安装好后,通过onnxruntime-gpu实现。 直接运行python程序是正常使用GPU的,如果使用PyInstaller将.py文件打包为.exe,发现只能使用CPU推理了。 本文分析这个问题和提供解决方案,供大家参考。 问题分析——找不到ONNX Runtime GPU 动态库 首先直接运行python程序

Hbase Filter+Scan 查询效率优化

Hbase Filter+Scan 查询效率问题 众所周知,Hbase利用filter过滤器查询时候会进行全表扫描,查询效率低下,如果没有二级索引,在项目中很多情况需要利用filter,下面针对这种情况尝试了几种优化的方案,仅供参考,欢迎交流。 根据业务要求,作者需要根据时间范围搜索所需要的数据,所以作者设计的rowKey是以时间戳为起始字符串的。 正确尝试: 1.scan 设置 开始行和结