Kaggle Intermediate ML Part Three——Pipeline

2024-02-26 01:04

本文主要是介绍Kaggle Intermediate ML Part Three——Pipeline,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Step 1: Define Preprocessing Steps

Understanding the Data:

  • Data source: Where is the data coming from? What format is it in (e.g., CSV, JSON)? What does it represent?
  • Data characteristics: What variables are present? What are their types (numerical, categorical, text)? Are there any missing values, outliers, or inconsistencies?
  • Model goals: What are you trying to achieve with the model? This will influence the preprocessing choices.

Common Preprocessing Techniques:

  • Data cleaning:
    • Handling missing values: Imputation (filling in with mean/median/mode), deletion, or specialized techniques like KNN imputation.
    • Outlier treatment: Capping, winsorizing, or removal based on domain knowledge.
    • Encoding categorical variables: One-hot encoding, label encoding, or frequency encoding depending on the context.
    • Text preprocessing: Lowercasing, tokenization, stop word removal, stemming/lemmatization.
  • Data transformation:
    • Scaling: Normalization (min-max scaling) or standardization (z-score) for numerical features.
    • Dimensionality reduction: Feature selection (e.g., correlation analysis, chi-square test) or feature engineering (creating new features).
    • Data integration: Combining data from different sources if necessary.

Expert Tips:

  • Iterative approach: Start with basic cleaning, then analyze the model's performance and refine preprocessing accordingly.
  • Domain knowledge: Leverage your understanding of the data and problem to guide preprocessing choices.
  • Experimentation: Try different techniques and compare results to find the optimal approach.
  • Documentation: Keep track of all preprocessing steps for reproducibility and future reference.

Step 2: Define the Model

Model Selection:

  • Consider data characteristics and problem type: For example, use linear regression for continuous predictions, logistic regression for binary classification, and decision trees for more complex relationships.
  • Think about interpretability: If explanation is important, choose a less complex model like linear regression or decision trees.
  • Prioritize model performance: Evaluate different models on the relevant metric (e.g., accuracy, AUC for classification, RMSE for regression).

Expert Tips:

  • No single best model: Experiment with different options to find the best fit for your data and problem.
  • Ensemble methods: Consider combining multiple models (e.g., random forest, gradient boosting) for improved performance.
  • Regularization: Techniques like L1/L2 regularization can prevent overfitting and improve generalization.
  • Parameter tuning: Optimize model hyperparameters using cross-validation or grid search.

Step 3: Create and Evaluate the Pipeline

Pipeline Implementation:

  • Use a machine learning library like scikit-learn to create a pipeline that combines preprocessing steps and the model.
  • Split the data into training and testing sets for evaluation.
  • Train the pipeline on the training set.
  • Evaluate the pipeline's performance on the testing set using appropriate metrics.

Expert Tips:

  • Modular design: Break down the pipeline into smaller, reusable steps for better organization and maintainability.
  • Cross-validation: Use k-fold cross-validation to get a more robust estimate of model performance.
  • Hyperparameter tuning: Tune the preprocessing steps and model hyperparameters within the pipeline for optimal results.
  • Error analysis: Examine the errors made by the model to identify areas for improvement.

Additional Considerations:

  • Computational cost: Some preprocessing steps and models can be computationally expensive. Consider this when making choices.
  • Explainability: If interpretability is crucial, choose models like linear regression or decision trees and explain their predictions.
  • Continuous improvement: Monitor model performance over time and retrain or adjust the pipeline as needed.


Step 1: Preprocessing

import pandas as pd
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder, StandardScaler# Load data
data = pd.read_csv("housing_data.csv")# Handle missing values
imputer = SimpleImputer(strategy="median")
data["LotFrontage"] = imputer.fit_transform(data[["LotFrontage"]])# Encode categorical variables
encoder = OneHotEncoder(handle_unknown="ignore")
data = pd.concat([data, pd.DataFrame(encoder.fit_transform(data[["MSSubClass"]]))], axis=1)# Scale numerical features
scaler = StandardScaler()
data["GrLivArea"] = scaler.fit_transform(data[["GrLivArea"]])
data["TotalBsmtSF"] = scaler.fit_transform(data[["TotalBsmtSF"]])# Split data into training and testing sets
from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(data.drop("SalePrice", axis=1), data["SalePrice"], test_size=0.2, random_state=42
)

Step 2: Define the Model

from sklearn.linear_model import LinearRegression# Create and train the model
model = LinearRegression()
model.fit(X_train, y_train)

Step 3: Create and Evaluate the Pipeline

from sklearn.pipeline import Pipeline# Create the pipeline
pipeline = Pipeline([("imputer", imputer),("encoder", encoder),("scaler", scaler),("model", model),]
)# Evaluate the pipeline
from sklearn.metrics import mean_squared_errory_pred = pipeline.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("Mean squared error:", mse)

Why Scale Numerical Features?

In machine learning models, features with vastly different scales can lead to several issues:

  • Dominant Features: Features with larger absolute values can overwhelm the influence of smaller features, hindering the model's ability to learn subtle relationships.
  • Distance-Based Algorithms: Algorithms like k-Nearest Neighbors or Support Vector Machines (SVMs) rely on distances between data points, and unevenly scaled features can distort these distances, affecting results.
  • Numerical Stability: Numerical operations within models can become unstable with features that have significant differences in magnitude.

Scaling addresses these problems by transforming the features to a common scale, ensuring:

  • Fair Representation: All features contribute equally to the model's learning process.
  • Accurate Distances: Distances between data points accurately reflect their true relationships.
  • Improved Numerical Stability: Calculations within the model become more reliable.

Common Scaling Techniques:

  1. Min-Max Scaling:

    • Rescales feature values to a range between a specified minimum (e.g., 0) and maximum (e.g., 1).
    • Suitable for algorithms that are sensitive to outliers.
    • Python example:
    from sklearn.preprocessing import MinMaxScalerscaler = MinMaxScaler(feature_range=(0, 1))
    scaled_data = scaler.fit_transform(data)
    
  2. Standard Scaling (Z-Score):

    • Subtracts the mean and then divides by the standard deviation of each feature.
    • Assumes features are normally distributed.
    • Python example:
    from sklearn.preprocessing import StandardScalerscaler = StandardScaler()
    scaled_data = scaler.fit_transform(data)
    
  3. Robust Scaling:

    • Similar to Z-score, but uses the median and interquartile range (IQR) for outlier-resistant scaling.
    • Suitable for heavy-tailed or skewed distributions.
    • Python example:
    from sklearn.preprocessing import RobustScalerscaler = RobustScaler()
    scaled_data = scaler.fit_transform(data)
    

Choosing the Right Technique:

  • Consider the distribution of your features (normal, skewed, heavy-tailed).
  • Evaluate the sensitivity of your model to outliers.
  • Experiment with different techniques and compare performance on your dataset.

Additional Considerations:

  • Inverse Scaling: If you need to interpret the model's predictions in the original feature units, apply the inverse scaling transformation after making predictions.
  • Scaling Pipeline: Use a Pipeline from scikit-learn to combine scaling with other preprocessing steps for efficient data transformation.

By effectively scaling numerical features, you can:

  • Improve the accuracy and stability of your machine learning models.
  • Facilitate better interpretation of results.
  • Ensure fairer treatment of all features in your model.

这篇关于Kaggle Intermediate ML Part Three——Pipeline的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/747243

相关文章

Level3 — PART 3 — 自然语言处理与文本分析

目录 自然语言处理概要 分词与词性标注 N-Gram 分词 分词及词性标注的难点 法则式分词法 全切分 FMM和BMM Bi-direction MM 优缺点 统计式分词法 N-Gram概率模型 HMM概率模型 词性标注(Part-of-Speech Tagging) HMM 文本挖掘概要 信息检索(Information Retrieval) 全文扫描 关键词

MySQL record 02 part

查看已建数据库的基本信息: show CREATE DATABASE mydb; 注意,是DATABASE 不是 DATABASEs, 命令成功执行后,回显的信息有: CREATE DATABASE mydb /*!40100 DEFAULT CHARACTER SET utf8mb3 / /!80016 DEFAULT ENCRYPTION=‘N’ / CREATE DATABASE myd

Jenkins--pipeline版本管理

为了提高脚本可维护性,更好的管理pipeline脚本,我们可以在项目配置中修改流水线定义,使用版本管理脚本,选择pipeline script from SCM: 我们看到现在SCM是无,因为还没有安装版本管理工具,先需要到插件管理中安装git。 安装后,在流水线设置的SCM中就能查看到Git: 在Repository URL中添加版本管理工具github或码云的仓库地址: 在Cred

Jenkins--pipeline认识及与RF文件的结合应用

什么是pipeline? Pipeline,就是可运行在Jenkins上的工作流框架,将原本独立运行的单个或多个节点任务连接起来,实现单个任务难以完成的复杂流程编排与可视化。 为什么要使用pipeline? 1.流程可视化显示 2.可自定义流程任务 3.所有步骤代码化实现 如何使用pipeline 首先需要安装pipeline插件: 流水线有声明式和脚本式的流水线语法 流水线结构介绍 Node:

Three 渲染器(二)

WebGL1Renderer 构造函数 WebGL1Renderer( parameters : Object ) Creates a new WebGL1Renderer. 属性 See the base WebGLRenderer class for common properties. 方法 See the base WebGLRenderer class for common

使用Azure Devops Pipeline将Docker应用部署到你的Raspberry Pi上

文章目录 1. 添加树莓派到 Agent Pool1.1 添加pool1.2 添加agent 2. 将树莓派添加到 Deployment Pool2.1 添加pool2.2 添加target 3. 添加编译流水线3.1 添加编译命令3.2 配置触发器 4. 添加发布流水线4.1 添加命令行4.2 配置artifact和触发器 5. 完成 1. 添加树莓派到 Agent Pool

kaggle竞赛宝典 | Mamba模型综述!

本文来源公众号“kaggle竞赛宝典”,仅用于学术分享,侵权删,干货满满。 原文链接:Mamba模型综述! 型语言模型(LLMs),成为深度学习的基石。尽管取得了令人瞩目的成就,Transformers仍面临固有的局限性,尤其是在推理时,由于注意力计算的平方复杂度,导致推理过程耗时较长。 最近,一种名为Mamba的新型架构应运而生,其灵感源自经典的状态空间模型,成为构建基础模型的有力替代方案

Vue3图片上传报错:Required part ‘file‘ is not present.

错误 "Required part 'file' is not present" 通常表明服务器期望在接收到的 multipart/form-data 请求中找到一个名为 file 的部分(即文件字段),但实际上没有找到。这可能是因为以下几个原因: 请求体构建不正确:在发送请求时,可能没有正确地将文件添加到 FormData 对象中,或者使用了错误的字段名。 前端代码错误:在前端代码中,可能

leetcode#628. Maximum Product of Three Numbers

题目 Given an integer array, find three numbers whose product is maximum and output the maximum product. Example 1: Input: [1,2,3]Output: 6 Example 2: Input: [1,2,3,4]Output: 24 Note: The lengt

【ML--05】第五课 如何做特征工程和特征选择

一、如何做特征工程? 1.排序特征:基于7W原始数据,对数值特征排序,得到1045维排序特征 2. 离散特征:将排序特征区间化(等值区间化、等量区间化),比如采用等量区间化为1-10,得到1045维离散特征 3. 计数特征:统计每一行中,离散特征1-10的个数,得到10维计数特征 4. 类别特征编码:将93维类别特征用one-hot编码 5. 交叉特征:特征之间两两融合,x+y、x-y、