算法沉淀——动态规划之简单多状态 dp 问题(上)(leetcode真题剖析)

本文主要是介绍算法沉淀——动态规划之简单多状态 dp 问题(上)(leetcode真题剖析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

算法沉淀——动态规划之简单多状态 dp 问题上

  • 01.按摩师
  • 02.打家劫舍 II
  • 03.删除并获得点数
  • 04.粉刷房子

01.按摩师

题目链接:https://leetcode.cn/problems/the-masseuse-lcci/

一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列,替按摩师找到最优的预约集合(总预约时间最长),返回总的分钟数。

注意:本题相对原题稍作改动

示例 1

输入: [1,2,3,1]

输出: 4

解释:选择 1 号预约和 3 号预约,总时长 = 1 + 3 = 4。

示例 2

输入: [2,7,9,3,1]

输出: 12

解释: 选择 1 号预约、 3 号预约和 5 号预约,总时长 = 2 + 9 + 1 = 12。

示例 3

输入: [2,1,4,5,3,1,1,3]

输出: 12

解释: 选择 1 号预约、 3 号预约、 5 号预约和 8 号预约,总时长 = 2 + 4 + 3 + 3 = 12。

思路

  1. 状态表达: 我们定义两个状态数组,fg

    • f[i] 表示:选择到位置 i 时,此时的最长预约时长,且 nums[i] 必须选。
    • g[i] 表示:选择到位置 i 时,此时的最长预约时长,nums[i] 不选。
  2. 状态转移方程: 对于 f[i]

    • 如果 nums[i] 必须选,那么我们仅需知道 i - 1 位置在不选的情况下的最长预约时长,然后加上 nums[i] 即可,因此 f[i] = g[i - 1] + nums[i]

    对于 g[i]

    • 如果 nums[i] 不选,那么 i - 1 位置上选或者不选都可以。因此,我们需要知道 i - 1 位置上选或者不选两种情况下的最长时长,因此 g[i] = max(f[i - 1], g[i - 1])
  3. 初始化: 由于这道题的初始化比较简单,无需加辅助节点,仅需初始化 f[0] = nums[0], g[0] = 0 即可。

  4. 填表顺序: 根据状态转移方程,从左往右,两个表一起填。

  5. 返回值: 根据状态表达,我们应该返回 max(f[n - 1], g[n - 1])

代码

class Solution {
public:int massage(vector<int>& nums) {int n = nums.size();if(n==0) return 0;vector<int> f(n);vector<int> g(n);f[0] = nums[0];for (int i = 1; i < n; ++i){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}return max(g[n - 1], f[n - 1]);}
};

02.打家劫舍 II

题目链接:https://leetcode.cn/problems/house-robber-ii/

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。

示例 1:

输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

示例 2:

输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。偷窃到的最高金额 = 1 + 3 = 4 。

示例 3:

输入:nums = [1,2,3]
输出:3

提示:

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 1000

思路

将环形的打家劫舍问题转化为两个单排的问题。具体来说,你分别考虑两种情况:

a. 偷第一个房屋的情况: 在这种情况下,由于首尾相连,你不能偷最后一个房子,因此偷窃范围是 [0, n - 2]。你可以使用之前解决「打家劫舍I」的动态规划方法来找到在这个范围内的最大金额,得到的结果是 x

b. 不偷第一个房屋的情况: 在这种情况下,你可以偷最后一个房子,因此偷窃范围是 [1, n - 1]。同样,使用相同的动态规划方法得到在这个范围内的最大金额,得到的结果是 y

最终的答案就是这两种情况下的最大值,即 max(x, y)

代码

class Solution {
public:int rob(vector<int>& nums) {int n=nums.size();return max(nums[0]+rob1(nums,2,n-2),rob1(nums,1,n-1));}int rob1(vector<int>& nums,int start,int end){if(start>end) return 0;int n=nums.size();vector<int> f(n);vector<int> g(n);f[start]=nums[start];for(int i=start+1;i<=end;i++){f[i]=g[i-1]+nums[i];g[i]=max(g[i-1],f[i-1]);}return max(g[end],f[end]);}
};

03.删除并获得点数

题目链接:https://leetcode.cn/problems/delete-and-earn/

给你一个整数数组 nums ,你可以对它进行一些操作。

每次操作中,选择任意一个 nums[i] ,删除它并获得 nums[i] 的点数。之后,你必须删除 所有 等于 nums[i] - 1nums[i] + 1 的元素。

开始你拥有 0 个点数。返回你能通过这些操作获得的最大点数。

示例 1:

输入:nums = [3,4,2]
输出:6
解释:
删除 4 获得 4 个点数,因此 3 也被删除。
之后,删除 2 获得 2 个点数。总共获得 6 个点数。

示例 2:

输入:nums = [2,2,3,3,3,4]
输出:9
解释:
删除 3 获得 3 个点数,接着要删除两个 2 和 4 。
之后,再次删除 3 获得 3 个点数,再次删除 3 获得 3 个点数。
总共获得 9 个点数。

提示:

  • 1 <= nums.length <= 2 * 104
  • 1 <= nums[i] <= 104

思路

其实这道题可以看作是「打家劫舍I」问题的变体。通过将每个数字的出现的和记录在 hash 数组中,然后在 hash 数组上应用「打家劫舍」的思路,你能够有效地解决这个问题。

具体来说,可以创建一个大小为 10001(根据题目的数据范围)的 hash 数组,将 nums 数组中的每个元素 x 累加到 hash 数组下标为 x 的位置上。然后就可以使用「打家劫舍I」问题的动态规划方法,从 hash 数组中找到不相邻的元素的最大和。

代码

class Solution {
public:int deleteAndEarn(vector<int>& nums) {int hash[10001] = {0};for(int& x:nums) hash[x]+=x;vector<int> f(10001);vector<int> g(10001);for(int i=1;i<10001;++i){f[i]=g[i-1]+hash[i];g[i]=max(g[i-1],f[i-1]);}return max(f[10000],g[10000]);}
};

04.粉刷房子

题目链接:https://leetcode.cn/problems/JEj789/

假如有一排房子,共 n 个,每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。

当然,因为市场上不同颜色油漆的价格不同,所以房子粉刷成不同颜色的花费成本也是不同的。每个房子粉刷成不同颜色的花费是以一个 n x 3 的正整数矩阵 costs 来表示的。

例如,costs[0][0] 表示第 0 号房子粉刷成红色的成本花费;costs[1][2] 表示第 1 号房子粉刷成绿色的花费,以此类推。

请计算出粉刷完所有房子最少的花费成本。

示例 1:

输入: costs = [[17,2,17],[16,16,5],[14,3,19]]
输出: 10
解释: 将 0 号房子粉刷成蓝色,1 号房子粉刷成绿色,2 号房子粉刷成蓝色。最少花费: 2 + 5 + 3 = 10。

示例 2:

输入: costs = [[7,6,2]]
输出: 2 

提示:

  • costs.length == n
  • costs[i].length == 3
  • 1 <= n <= 100
  • 1 <= costs[i][j] <= 20

思路

  1. 状态表表示:

    • 在处理线性动态规划时,采用“经验+题目要求”方式定义状态表,选择以某个位置为结尾的方式。
    • 在该位置结束时,定义三种颜色选择的状态表,分别表示最后一个位置选择“红色”、“蓝色”和“绿色”的最小花费。
  2. 状态转移方程:

    • 分析三个状态的转移方程,以 dp[i][0] 为例:

      • 若选择在位置 i 粉刷“红色”,考虑前一个位置“蓝色”和“绿色”两种情况的最小花费,再加上当前位置的花费。
      • 类似地,对于 dp[i][1] dp[i][2],分别考虑选择“蓝色”和“绿色”时的最小花费。

      于是状态方程为:

      dp[i][0]=min(dp[i-1][1],dp[i-1][2])+costs[i-1][0];
      dp[i][1]=min(dp[i-1][0],dp[i-1][2])+costs[i-1][1];
      dp[i][2]=min(dp[i-1][0],dp[i-1][1])+costs[i-1][2];
      
  3. 初始化:

    • 添加一个辅助节点,将其初始化为 0,确保后续填表的正确性。
    • 注意辅助节点的值要符合题目的要求。
  4. 填表顺序:

    • 根据状态转移方程,从左往右同时填充三个表格。
  5. 返回值:

    • 返回最后一个位置三种颜色选择的最小值,即 min(dp[n][0], min(dp[n][1], dp[n][2]))

代码

class Solution {
public:int minCost(vector<vector<int>>& costs) {int n=costs.size();vector<vector<int>> dp(n+1,vector<int>(3));for(int i=1;i<=n;i++){dp[i][0]=min(dp[i-1][1],dp[i-1][2])+costs[i-1][0];dp[i][1]=min(dp[i-1][0],dp[i-1][2])+costs[i-1][1];dp[i][2]=min(dp[i-1][0],dp[i-1][1])+costs[i-1][2];}return min(dp[n][0],min(dp[n][1],dp[n][2]));}
};

这篇关于算法沉淀——动态规划之简单多状态 dp 问题(上)(leetcode真题剖析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/746703

相关文章

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

element-ui下拉输入框+resetFields无法回显的问题解决

《element-ui下拉输入框+resetFields无法回显的问题解决》本文主要介绍了在使用ElementUI的下拉输入框时,点击重置按钮后输入框无法回显数据的问题,具有一定的参考价值,感兴趣的... 目录描述原因问题重现解决方案方法一方法二总结描述第一次进入页面,不做任何操作,点击重置按钮,再进行下

解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题

《解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题》本文主要讲述了在使用MyBatis和MyBatis-Plus时遇到的绑定异常... 目录myBATis-plus-boot-starpythonter与mybatis-spring-b

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

mysql主从及遇到的问题解决

《mysql主从及遇到的问题解决》本文详细介绍了如何使用Docker配置MySQL主从复制,首先创建了两个文件夹并分别配置了`my.cnf`文件,通过执行脚本启动容器并配置好主从关系,文中还提到了一些... 目录mysql主从及遇到问题解决遇到的问题说明总结mysql主从及遇到问题解决1.基于mysql

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

如何安装HWE内核? Ubuntu安装hwe内核解决硬件太新的问题

《如何安装HWE内核?Ubuntu安装hwe内核解决硬件太新的问题》今天的主角就是hwe内核(hardwareenablementkernel),一般安装的Ubuntu都是初始内核,不能很好地支... 对于追求系统稳定性,又想充分利用最新硬件特性的 Ubuntu 用户来说,HWEXBQgUbdlna(Har