pythonJax小记(五):python: 使用Jax深度图像(正交投影和透视投影之间的转换)(持续更新,评论区可以补充)

本文主要是介绍pythonJax小记(五):python: 使用Jax深度图像(正交投影和透视投影之间的转换)(持续更新,评论区可以补充),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python: 使用Jax深度图像(正交投影和透视投影之间的转换)

  • 前言
  • 问题描述
    • 1. 透视投影
    • 2. 正交投影
  • 直接上代码
  • 解释
    • 1. `compute_projection_parameters` 函数
      • a. 参数解释
      • b. 函数计算
    • 2. `ortho_to_persp` 函数
      • a. 计算投影参数:
      • b. 生成像素坐标网格:
      • c. 计算透视深度值:
    • 3. `persp_to_ortho` 函数
      • a. 计算投影参数:
      • b. 生成像素坐标网格:
      • c. 计算正交深度值:


前言

自用,刚开始接触可能顺序会比较乱。

问题描述

目前我知道的(欢迎评论区补充)照相机生成的深度图像有两种方法(如下图):
在这里插入图片描述

在透视投影中,物体的大小和形状会根据其距离观察者的远近而发生变化,这是因为透视投影模拟了人眼或相机镜头观察世界的方式,远处的物体看起来更小,近处的物体看起来更大。而在正交投影中,物体的大小和形状与其距离无关,提供了一种更抽象但尺寸精确的视图。


现在假设照相机正在观察一个又大平面又平整的物体:

1. 透视投影

在透视投影中,物体的大小会随着距离相机的远近而变化,即距离相机越远,物体在图像上看起来越小。这种投影方式能够模拟人眼观察世界的方式,因此在大多数三维图形应用中,透视投影是用来创建更加真实感的视觉效果。

在这里插入图片描述
虚线部分是照相机到照射物体的距离,从左到右依次叫做depth1pdepth2pdepth3pdepth4pdepth5p;它们之间的关系应该是:

depth1p = depth5p > depth2p = depth4p > depth3p

2. 正交投影

在正交投影中,所有的投影线都是平行的。这意味着无论物体距离相机有多远,它的大小在投影图上都保持不变。正交投影常用于工程图纸和某些类型的艺术作品,因为它不会因为透视而扭曲物体的比例。

在这里插入图片描述

虚线部分是照相机到照射物体的距离,从左到右依次叫做depth1odepth2odepth3odepth4odepth5o;它们之间的关系应该是:

depth1o = depth2o = depth3o = depth4o = depth5o = depth3p(透视投影中最中心点的距离)


我想做的是depth1p <——>depth1odepth2p <——>depth2odepth3p <——>depth3o(数值相等不变)depth4p <——>depth4odepth5p <——>depth5o之间的互相转化。

直接上代码

from jax import random
import jax.numpy as jnp
from jax import jitdef compute_projection_parameters(fov, resolution):"""计算透视投影所需的参数"""h, w = resolutionf = 0.5 * w / jnp.tan(fov * 0.5)  # 假设fov是水平的# f = 0.5 * h / jnp.tan(fov * 0.5)  # 假设fov是竖直的cx, cy = w * 0.5, h * 0.5return f, cx, cy@jit
def ortho_to_persp(depth_ortho, fov, resolution):"""正交投影深度图转换为透视投影深度图"""f, cx, cy = compute_projection_parameters(fov, resolution)y, x = jnp.indices(depth_ortho.shape)z = depth_orthox_persp = (x - cx) * z / fy_persp = (y - cy) * z / fdepth_persp = jnp.sqrt(x_persp**2 + y_persp**2 + z**2)return depth_persp@jit
def persp_to_ortho(depth_persp, fov, resolution):     """透视投影深度图转换为正交投影深度图"""    f, cx, cy = compute_projection_parameters(fov, resolution)     y, x = jnp.indices(depth_persp.shape)     # 逆向透视效果调整深度值    z = depth_persp     # 假设所有点在深度图中直接面向相机,计算透视图中的实际深度    depth_ortho = z / jnp.sqrt(((x - cx) / f)**2 + ((y - cy) / f)**2 + 1)     return depth_ortho# 创建随机键
key = random.PRNGKey(0)# 示例参数
fov = jnp.radians(58.0)  # 58度的视场
resolution = (555, 555)  # 深度图的分辨率# 使用JAX的随机数生成函数来创建假设的深度图
depth_ortho = random.uniform(key, resolution)
depth_persp = random.uniform(key, resolution)# 执行转换
depth_persp_converted = ortho_to_persp(depth_ortho, fov, resolution)
depth_ortho_converted = persp_to_ortho(depth_persp, fov, resolution)print("depth_ortho[277][277]:")
print(depth_ortho[277][277])
print("depth_ortho:")
print(depth_ortho)
print("depth_persp_converted[277][277]:")
print(depth_persp_converted[277][277])
print("depth_persp_converted:")
print(depth_persp_converted)print("depth_persp[277][277]:")
print(depth_persp[277][277])
print("depth_persp:")
print(depth_persp)
print("depth_ortho_converted[277][277]:")
print(depth_ortho_converted[277][277])
print("depth_ortho_converted:")
print(depth_ortho_converted)

输出:

depth_ortho[277][277]:
0.17295325
depth_ortho:
[[0.63084936 0.12969959 0.13633609 ... 0.5946181  0.59479845 0.4128834 ]
[0.29537833 0.3383578  0.5370909  ... 0.53237784 0.90082276 0.5761422 ]
[0.32716596 0.12419498 0.6801119  ... 0.55152595 0.48904026 0.8486302 ]
...
[0.30268252 0.2692206  0.73559785 ... 0.210132   0.06937218 0.61453307]
[0.30586207 0.18751395 0.5052029  ... 0.364128   0.3952657  0.09071398]
[0.64812434 0.6937938  0.5302503  ... 0.21545482 0.274127   0.7742363 ]]
depth_persp_converted[277][277]:
0.17295341
depth_persp_converted:
[[0.8015802  0.16468817 0.17299668 ... 0.7539958  0.75473905 0.5242654 ]
[0.37506145 0.4293407  0.68104595 ... 0.6746088  1.142268   0.73106426]
[0.41514048 0.15748264 0.8618096  ... 0.6983931  0.61969155 1.0760863 ]
...
[0.38381162 0.34114605 0.93148196 ... 0.26590642 0.08784546 0.7787128 ]
[0.388108   0.23777282 0.6401722  ... 0.46109253 0.5008643  0.11502781]
[0.82296646 0.88035184 0.6723719  ... 0.2730161  0.34760055 0.98242503]]
depth_persp[277][277]:
0.17295325
depth_persp:
[[0.63084936 0.12969959 0.13633609 ... 0.5946181  0.59479845 0.4128834 ]
[0.29537833 0.3383578  0.5370909  ... 0.53237784 0.90082276 0.5761422 ]
[0.32716596 0.12419498 0.6801119  ... 0.55152595 0.48904026 0.8486302 ]
...
[0.30268252 0.2692206  0.73559785 ... 0.210132   0.06937218 0.61453307]
[0.30586207 0.18751395 0.5052029  ... 0.364128   0.3952657  0.09071398]
[0.64812434 0.6937938  0.5302503  ... 0.21545482 0.274127   0.7742363 ]]
depth_ortho_converted[277][277]:
0.17295307
depth_ortho_converted:
[[0.49648297 0.10214445 0.10744441 ... 0.46892923 0.4687517  0.32516485]
[0.23262416 0.26665536 0.4235641  ... 0.42013407 0.7104127  0.45405012]
[0.25783455 0.09794345 0.53672194 ... 0.4355439  0.3859345  0.6692523 ]
...
[0.23870227 0.21245952 0.58090675 ... 0.1660564  0.05478369 0.4849681 ]
[0.24104528 0.14787847 0.39868954 ... 0.2875544  0.31193072 0.07153945]
[0.510428   0.5467698  0.41816944 ... 0.17002945 0.21618383 0.6101655 ]]

解释

1. compute_projection_parameters 函数

compute_projection_parameters函数的目的是根据给定的视场角(Field of View, FOV)和图像分辨率来计算透视投影所需的参数。这些参数主要是焦距(f)和图像的中心点坐标(cx,cy)。这些参数对于将三维空间中的点投影到二维图像平面上,以及进行透视投影与正交投影之间的转换非常重要。

a. 参数解释

  • fov:视场角,表示相机视角的宽度。在三维图形和计算机视觉中,FOV是一个关键参数,因为它定义了可见场景的范围。视场角越大,相机能够看到的场景就越宽广。

  • resolution:图像分辨率,通常以像素为单位表示图像的宽度和高度。在这个上下文中,分辨率告诉我们图像平面的尺寸,这对于计算图像中点的位置非常重要。

b. 函数计算

焦距(f) 的计算基于视场角(FOV)和图像宽度。焦距是一个表示相机与图像平面之间距离的参数,它影响着场景在图像平面上的投影方式。在这个函数中,焦距是通过下面的公式计算的:
f = 0.5 × w i d t h / t a n ( F O V / 2 ) f = 0.5 × width / tan(FOV/2) f=0.5×width/tan(FOV/2)
这个公式利用了简单的三角形几何关系,其中假设图像平面的宽度直接对应于视场角的跨度。通过这个公式,我们可以根据视场角和图像宽度计算出焦距。

图像中心点坐标(cx,cy) 的计算很直接:它们是图像宽度和高度的一半。图像中心点是图像平面上的一个关键参考点,因为它通常被用作投影和反投影过程中的原点。

2. ortho_to_persp 函数

ortho_to_persp函数的目的是将正交投影的深度图转换为透视投影的深度图。这个转换过程需要根据视场角(FOV)、图像分辨率以及焦距(f)和图像中心(cx, cy)这些计算出的投影参数来完成。

a. 计算投影参数:

首先,利用compute_projection_parameters函数根据FOV和图像分辨率计算出焦距(f)和图像中心(cx, cy)。

b. 生成像素坐标网格:

使用jnp.indices生成一个与输入深度图相同尺寸的像素坐标网格。这个网格包含了每个像素点的行(y)和列(x)坐标。

c. 计算透视深度值:

  • 通过(x - cx)和(y - cy)计算每个像素点相对于图像中心的偏移。
  • 使用偏移值和深度值(z)以及焦距(f)来调整每个像素的深度值。这里,深度值(z)乘以偏移量除以焦距,计算出在透视视图下像素的“新”位置。
  • 最后,利用jnp.sqrt(x_persp**2 + y_persp**2 + z**2)计算每个像素点在透视投影中的实际深度值。这个步骤通过考虑像素在透视投影中的三维空间位置(考虑深度z)来调整深度图,使得远处的物体看起来更小,近处的物体看起来更大。

3. persp_to_ortho 函数

persp_to_ortho函数的目的是将透视投影的深度图转换为正交投影的深度图。这个过程需要逆转透视投影中深度与像素位置关系的影响,恢复到一个正交视图中,其中物体的大小不会因为它们距离相机的远近而改变。

a. 计算投影参数:

首先,利用compute_projection_parameters函数根据FOV和图像分辨率计算出焦距(f)和图像中心(cx, cy)。

b. 生成像素坐标网格:

使用jnp.indices生成一个与输入深度图相同尺寸的像素坐标网格。这个网格包含了每个像素点的行(y)和列(x)坐标。

c. 计算正交深度值:

在公式depth_ortho = z / jnp.sqrt(((x - cx) / f)**2 + ((y - cy) / f)**2 + 1)中:

  • (x - cx)(y - cy)计算的是像素点相对于图像中心的位置差异。
  • / f是根据焦距来缩放这些差异,使其与实际的视角对应起来。
  • ((x - cx) / f)**2 + ((y - cy) / f)**2计算的是像素点从图像中心到该点的距离的平方,这个距离是在图像平面上的。
  • +1实际上是在计算直角三角形的斜边长度时必须添加的项。想象一个直角三角形,其中(x - cx) / f(y - cy) / f代表两个直角边上的长度,而我们想要找的是斜边的长度,即从相机到像素点的实际距离。在这种情况下,+1代表了这个直角三角形斜边计算中的垂直边(即相机到图像平面的距离),它是一个常数,因为在透视投影中,所有的像素点都是从相同的焦点投影到图像平面上的。+1在这里同时确保了对于所有像素,即使在图像中心(x=cx,y=cy)也能正确处理深度值。
  • 最后用已知的深度z比上这个比例得到正交投影下的深度值。

这篇关于pythonJax小记(五):python: 使用Jax深度图像(正交投影和透视投影之间的转换)(持续更新,评论区可以补充)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/743867

相关文章

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

Python实现文件下载、Cookie以及重定向的方法代码

《Python实现文件下载、Cookie以及重定向的方法代码》本文主要介绍了如何使用Python的requests模块进行网络请求操作,涵盖了从文件下载、Cookie处理到重定向与历史请求等多个方面,... 目录前言一、下载网络文件(一)基本步骤(二)分段下载大文件(三)常见问题二、requests模块处理

使用DeepSeek API 结合VSCode提升开发效率

《使用DeepSeekAPI结合VSCode提升开发效率》:本文主要介绍DeepSeekAPI与VisualStudioCode(VSCode)结合使用,以提升软件开发效率,具有一定的参考价值... 目录引言准备工作安装必要的 VSCode 扩展配置 DeepSeek API1. 创建 API 请求文件2.

使用TomCat,service输出台出现乱码的解决

《使用TomCat,service输出台出现乱码的解决》本文介绍了解决Tomcat服务输出台中文乱码问题的两种方法,第一种方法是修改`logging.properties`文件中的`prefix`和`... 目录使用TomCat,service输出台出现乱码问题1解决方案问题2解决方案总结使用TomCat,

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf