C#,动态规划(DP)模拟退火(Simulated Annealing)算法与源代码

本文主要是介绍C#,动态规划(DP)模拟退火(Simulated Annealing)算法与源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 模拟退火

*问题:**给定一个成本函数f:r^n–>r*,找到一个 n 元组,该元组最小化 f 的值。请注意,最小化函数值在算法上等同于最大化(因为我们可以将成本函数重新定义为 1-f)。 很多有微积分/分析背景的人可能都熟悉单变量函数的简单优化。例如,函数 f(x) = x^2 + 2x 可以通过将一阶导数设置为零来优化,从而获得产生最小值 f(-1) = -1 的解 x = -1 。这种技术适用于变量很少的简单函数。然而,通常情况下,研究人员对优化几个变量的函数感兴趣,在这种情况下,只能通过计算获得解。

一个困难的优化任务的极好例子是芯片平面规划问题。假设你在英特尔工作,你的任务是设计集成电路的布局。您有一组不同形状/大小的模块,以及可以放置模块的固定区域。你想要达到的目标有很多:最大化导线连接元件的能力,最小化净面积,最小化芯片成本,等等。考虑到这些,您创建了一个成本函数,取所有,比如说, 1000 个变量配置,并返回一个代表输入配置“成本”的实数值。我们称之为目标函数,因为目标是最小化它的值。 一个简单的算法是完全的空间搜索——我们搜索所有可能的配置,直到找到最小值。这对于变量很少的函数来说可能就足够了,但是我们想到的问题需要这样一个强力算法来玩 *O(n!)*。

由于这类问题和其他 NP 难问题的计算困难,许多优化试探法已经被开发出来,试图产生一个好的,尽管可能是次优的值。在我们的例子中,我们不一定需要找到一个严格的最优值——找到一个接近最优的值将满足我们的目标。一种广泛使用的技术是模拟退火,通过它我们引入了一定程度的随机性,有可能从一个更好的解转移到一个更差的解,试图逃离局部极小值并收敛到一个更接近全局最优的值。

模拟退火是基于冶金实践,通过这种实践,材料被加热到高温并冷却。在高温下,原子可能会不可预测地移动,通常会随着材料冷却成纯晶体而消除杂质。这是通过模拟退火优化算法复制的,能量状态对应于当前解。 在这个算法中,我们定义了一个初始温度和一个最低温度,初始温度通常设置为 1,最低温度的数量级为 10^-4.当前温度乘以某个分数α,然后降低,直到达到最低温度。对于每个不同的温度值,我们运行核心优化例程的次数是固定的。优化程序包括找到一个相邻解并以概率e^(f(c–f(n)】接受它,其中 c 是当前解而 n 是相邻解。通过对当前解施加微小的扰动来找到相邻解。这种随机性有助于避开优化启发式算法的常见陷阱——陷入局部极小值。通过潜在地接受一个比我们目前拥有的更差的最优解,并以与成本增加相反的概率接受它,算法更有可能收敛到全局最优。设计一个邻居函数是相当棘手的,必须在个案的基础上完成,但以下是在位置优化问题中寻找邻居的一些想法。

  • 在随机方向上将所有点移动 0 或 1 个单位
  • 随机移动输入元素
  • 交换输入序列中的随机元素
  • 置换输入序列
  • 将输入序列分成随机数量的段和置换段

一个警告是,我们需要提供一个初始解决方案,以便算法知道从哪里开始。这可以通过两种方式来实现:(1)使用关于问题的先验知识来输入良好的起点,以及(2)生成随机解。尽管生成随机解更糟糕,有时会抑制算法的成功,但对于我们对环境一无所知的问题,这是唯一的选择。

还有许多其他优化技术,尽管模拟退火是一种有用的随机优化启发式方法,适用于大型离散搜索空间,在这些空间中,随着时间的推移,最优性是优先的。下面,我包含了一个基于位置的模拟退火的基本框架(可能是模拟退火最适用的优化风格)。当然,成本函数、候选生成函数和邻居函数必须根据手头的具体问题来定义,尽管核心优化例程已经实现。

2 源程序(文本格式)

using System;
using System.Text;

namespace Legalsoft.Truffer.Algorithm
{
    /// <summary>
    /// 算法核心数据类
    /// 含:方差系数均方根误差,配置参数(数组)
    /// </summary>
    public class Anneal_Solution
    {
        /// <summary>
        /// 方差系数均方根误差
        /// Coefficient of Variance Root Mean Squared Error
        /// 默认初值0.0;不超过1.0;
        /// </summary>
        public double CVRMSE { get; set; } = 0.0;
        /// <summary>
        /// 配置参数(数组)
        /// 整型数组;无初值(null);
        /// </summary>
        public int[] Config { get; set; } = null;
        /// <summary>
        /// (无参)默认构造函数
        /// </summary>
        public Anneal_Solution()
        {
        }
        /// <summary>
        /// (有参)构造函数
        /// </summary>
        /// <param name="CVRMSE">方差系数均方根误差</param>
        /// <param name="configuration">配置参数(数组)</param>
        public Anneal_Solution(double CVRMSE, int[] configuration)
        {
            this.CVRMSE = CVRMSE;
            Config = configuration;
        }
    }

    /// <summary>
    /// 模拟退火算法
    /// </summary>
    public class Simulated_Annealing
    {
        private static Random rand { get; set; } = new Random((int)DateTime.Now.Ticks);

        public static string Solve(int M = 15, int N = 15, double T_Minium = 0.0001, double Alpha = 0.9, int Maxium_Iterations = 100)
        {
            string[,] sourceArray = new string[M, N];
            Anneal_Solution min = new Anneal_Solution(double.MaxValue, null);
            Anneal_Solution currentSol = Rand_Solution(M);

            double temperature = 1.0;
            while (temperature > T_Minium)
            {
                for (int i = 0; i < Maxium_Iterations; i++)
                {
                    if (currentSol.CVRMSE < min.CVRMSE)
                    {
                        min = currentSol;
                    }

                    Anneal_Solution newSol = Neighbor(currentSol);
                    double ap = Math.Pow(Math.E, (currentSol.CVRMSE - newSol.CVRMSE) / temperature);
                    if (ap > rand.NextDouble())
                    {
                        currentSol = newSol;
                    }
                }
                temperature *= Alpha;
            }
            #endregion

            for (int i = 0; i < sourceArray.GetLength(0); i++)
            {
                for (int j = 0; j < sourceArray.GetLength(1); j++)
                {
                    sourceArray[i, j] = "X";
                }
            }

            foreach (int k in min.Config)
            {
                int[] coord = Index_To_Points(M, N, k);
                sourceArray[coord[0], coord[1]] = "-";
            }

            StringBuilder sb = new StringBuilder();
            for (int i = 0; i < sourceArray.GetLength(0); i++)
            {
                for (int j = 0; j < sourceArray.GetLength(1); j++)
                {
                    sb.Append(sourceArray[i, j] + ", ");
                }
                sb.AppendLine("<br>");
            }
            return sb.ToString();
        }

        public static Anneal_Solution Neighbor(Anneal_Solution currentSol)
        {
            return currentSol;
        }

        public static Anneal_Solution Rand_Solution(int n)
        {
            int[] a = new int[n];
            for (int i = 0; i < n; i++)
            {
                a[i] = i + 1;
            }
            return new Anneal_Solution(-1, a);
        }

        public static double Cost(int[] inputConfiguration)
        {
            return -1;
        }

        public static int[] Index_To_Points(int M, int N, int index)
        {
            int[] points = { index % M, index / M };
            return points;
        }
    }
}
 

3 代码格式

using System;
using System.Text;namespace Legalsoft.Truffer.Algorithm
{/// <summary>/// 算法核心数据类/// 含:方差系数均方根误差,配置参数(数组)/// </summary>public class Anneal_Solution{/// <summary>/// 方差系数均方根误差/// Coefficient of Variance Root Mean Squared Error/// 默认初值0.0;不超过1.0;/// </summary>public double CVRMSE { get; set; } = 0.0;/// <summary>/// 配置参数(数组)/// 整型数组;无初值(null);/// </summary>public int[] Config { get; set; } = null;/// <summary>/// (无参)默认构造函数/// </summary>public Anneal_Solution(){}/// <summary>/// (有参)构造函数/// </summary>/// <param name="CVRMSE">方差系数均方根误差</param>/// <param name="configuration">配置参数(数组)</param>public Anneal_Solution(double CVRMSE, int[] configuration){this.CVRMSE = CVRMSE;Config = configuration;}}/// <summary>/// 模拟退火算法/// </summary>public class Simulated_Annealing{private static Random rand { get; set; } = new Random((int)DateTime.Now.Ticks);public static string Solve(int M = 15, int N = 15, double T_Minium = 0.0001, double Alpha = 0.9, int Maxium_Iterations = 100){string[,] sourceArray = new string[M, N];Anneal_Solution min = new Anneal_Solution(double.MaxValue, null);Anneal_Solution currentSol = Rand_Solution(M);double temperature = 1.0;while (temperature > T_Minium){for (int i = 0; i < Maxium_Iterations; i++){if (currentSol.CVRMSE < min.CVRMSE){min = currentSol;}Anneal_Solution newSol = Neighbor(currentSol);double ap = Math.Pow(Math.E, (currentSol.CVRMSE - newSol.CVRMSE) / temperature);if (ap > rand.NextDouble()){currentSol = newSol;}}temperature *= Alpha;}#endregionfor (int i = 0; i < sourceArray.GetLength(0); i++){for (int j = 0; j < sourceArray.GetLength(1); j++){sourceArray[i, j] = "X";}}foreach (int k in min.Config){int[] coord = Index_To_Points(M, N, k);sourceArray[coord[0], coord[1]] = "-";}StringBuilder sb = new StringBuilder();for (int i = 0; i < sourceArray.GetLength(0); i++){for (int j = 0; j < sourceArray.GetLength(1); j++){sb.Append(sourceArray[i, j] + ", ");}sb.AppendLine("<br>");}return sb.ToString();}public static Anneal_Solution Neighbor(Anneal_Solution currentSol){return currentSol;}public static Anneal_Solution Rand_Solution(int n){int[] a = new int[n];for (int i = 0; i < n; i++){a[i] = i + 1;}return new Anneal_Solution(-1, a);}public static double Cost(int[] inputConfiguration){return -1;}public static int[] Index_To_Points(int M, int N, int index){int[] points = { index % M, index / M };return points;}}
}

这篇关于C#,动态规划(DP)模拟退火(Simulated Annealing)算法与源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/742038

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

2. c#从不同cs的文件调用函数

1.文件目录如下: 2. Program.cs文件的主函数如下 using System;using System.Collections.Generic;using System.Linq;using System.Threading.Tasks;using System.Windows.Forms;namespace datasAnalysis{internal static

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表