(done) 什么是特征值和特征向量?如何求特征值的特征向量 ?如何判断一个矩阵能否相似对角化?

2024-02-23 22:04

本文主要是介绍(done) 什么是特征值和特征向量?如何求特征值的特征向量 ?如何判断一个矩阵能否相似对角化?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是齐次方程? https://blog.csdn.net/shimly123456/article/details/136198159

行列式和是否有解的关系? https://blog.csdn.net/shimly123456/article/details/136198215

特征值和特征向量 参考视频:https://www.bilibili.com/video/BV1vY4y1J7gd/?spm_id_from=333.337.search-card.all.click&vd_source=7a1a0bc74158c6993c7355c5490fc600

一个求特征值和特征向量 (手算,还包括矩阵相似对角化) 的例子:https://www.bilibili.com/video/BV14T4y127jf/?spm_id_from=333.337.search-card.all.click&vd_source=7a1a0bc74158c6993c7355c5490fc600

一个更详细的求特征值和特征向量(手算,提到了“自由未知量”)例子:https://www.bilibili.com/video/BV1Js4y1372V/?spm_id_from=333.337.search-card.all.click&vd_source=7a1a0bc74158c6993c7355c5490fc600


在这里插入图片描述

把矩阵 A 作为一个对向量的映射,x1 矢量在经过 A 映射后变换了方向,x2 经过 A 映射后保持原来的方式,只是长度发生了变化 (长度变换可以是负数,也就是 x2 方向变相反了也不影响)。像 x1 这种向量就不是 矩阵A 的特征向量;x2 这种向量就是矩阵 A 的特征向量

由于 矩阵A 对特征向量 x2 只起到了伸缩作用,那么就可以写下式子 (lamda 是一个常数、标量)
Ax2 = (lamda) * x2

在这里,(lamda) 就是特征值,x2 就是特征向量

所以,特征向量的严格定义就是:只要一个向量 x2 可以写成 Ax2 = (lamda) * x2。那么 lamda 就是矩阵 A 的特征值,x2 就是矩阵 A 的特征向量


一个矩阵可以有多个特征值和特征向量,如下图为例:
在这里插入图片描述

图片可以经过线性变化(或者说,矩阵乘法)进行翻转,只要把图片上的每一个像素点视为一个矢量,然后让它们乘以翻转矩阵即可。

在这里,经过翻转矩阵映射后,图片左右翻转了,每一个像素点(即,矢量) 在纵轴上的方向没有变化,所以有纵特征向量 x1,在横轴上的方向变反了,所以有横特征向量 x2。x1 和 x2 的特征值分别是 1 和 -1


接下来,我们看看特征值和特征向量的严格数学计算
在这里插入图片描述

如果看不懂,可以再看一遍参考视频,也就 6min,不长


以下是一个求特征值、特征向量,从而把矩阵相似对角化的例子:
在这里插入图片描述


当 lamda1 = lamda2 = 2 时,我们发现求出的矩阵只有一个非零行,那么也就是说它的 “自由未知量” 是 2。
这其实暗含了 “我们能够得到两个线性无关非零解” 的意思,也就说这个矩阵是可以相似对角化的
在这里插入图片描述

这篇关于(done) 什么是特征值和特征向量?如何求特征值的特征向量 ?如何判断一个矩阵能否相似对角化?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/740070

相关文章

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

zoj 1721 判断2条线段(完全)相交

给出起点,终点,与一些障碍线段。 求起点到终点的最短路。 枚举2点的距离,然后最短路。 2点可达条件:没有线段与这2点所构成的线段(完全)相交。 const double eps = 1e-8 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;

POJ1269 判断2条直线的位置关系

题目大意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。 解题思路: 先判断两条直线p1p2, q1q2是否共线, 如果不是,再判断 直线 是否平行, 如果还不是, 则两直线相交。  判断共线:  p1p2q1 共线 且 p1p2q2 共线 ,共线用叉乘为 0  来判断,  判断 平行:  p1p

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int