协同过滤算法之连续评分通过皮尔逊相关系数计算相似度原理及代码实现

本文主要是介绍协同过滤算法之连续评分通过皮尔逊相关系数计算相似度原理及代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 相关算法介绍
      • 余弦相似度
      • 皮尔逊(Pearson)相关系数
    • 使用协同过滤推荐算法对用户进行评分预测
      • 协同过滤推荐算法数据集
      • 关于用户-物品评分矩阵
      • 代码及实现
      • 如何计算评分预测?
      • 总结

相关算法介绍

余弦相似度

  • 度量的是两个向量之间的夹角, 用夹角的余弦值来度量相似的情况
  • 两个向量的夹角为0是,余弦值为1, 当夹角为90度是余弦值为0,为180度是余弦值为-1
  • 余弦相似度在度量文本相似度, 用户相似度 物品相似度的时候较为常用
  • 余弦相似度的特点, 与向量长度无关,余弦相似度计算要对向量长度归一化, 两个向量只要方向一致,无论程度强弱, 都可以视为’相似’
    在这里插入图片描述

皮尔逊(Pearson)相关系数

  • 实际上也是一种余弦相似度, 不过先对向量做了中心化, 向量a b 各自减去向量的均值后, 再计算余弦相似度
  • 皮尔逊相似度计算结果在-1,1之间 -1表示负相关, 1表示正相关
  • 度量两个变量是不是同增同减
  • 皮尔逊相关系数度量的是两个变量的变化趋势是否一致, 不适合计算布尔值向量之间的相关度
    在这里插入图片描述

使用协同过滤推荐算法对用户进行评分预测

协同过滤推荐算法数据集

  • 在上次通过Jaccard相似度计算,我们只是创建了用户对物品的一个购买记录,也可以是浏览点击记录、收听记录等等。这样数据我们预测的结果主要是预测用户是否对某物品感兴趣,对于这件物品的喜好程度却不能很好的预测。

  • 因此在协同过滤推荐算法中其实会更多的利用用户对某种物品的“评分”数据来进行预测,通过评分数据集,我们可以预测用户对于他没有评分过的物品进行评分。实现原理和思想和都是一样的,只是使用的数据集是用户-物品的评分数据。

关于用户-物品评分矩阵

  • 用户-物品的评分矩阵,根据评分矩阵的稀疏程度会有不同的解决方案,一般有两种情形:
  1. 稠密评分矩阵
    在这里插入图片描述

  2. 稀疏评分矩阵
    在这里插入图片描述

代码及实现

  • 构建数据集
import pandas as pd
import numpy as npusers = ["Thomas", "Cauchy", "Alice", "Bob", "Alex"]
items = ["iPad", "MacBook", "iPhone", "iWatch", "AirPods"]
#用户购买记录数据集
#构建评分数据时,对于缺失的部分我们需要保留为None,如果设置为0那么会被当作评分值为0去对待
datasets = [[5,3,4,4,None],[3,1,2,3,3],[4,3,4,3,5],[3,3,1,5,4],[1,5,5,2,1],
]
  • 计算相似度
#对于评分数据这里我们采用皮尔逊相关系数[-1,1]来计算,-1表示强负相关,+1表示强正相关。 pandas中corr方法可直接用于计算皮尔逊相关系数
df = pd.DataFrame(datasets,columns=items,index=users)print("用户之间的两两相似度:")# 默认是按列进行计算,因此如果计算用户间的相似度,当前需要进行转置
user_similar = df.T.corr()
print(user_similar.round(4))print("物品之间的两两相似度:")
item_similar = df.corr()
print(item_similar.round(4))

在这里插入图片描述
Tips:我们在做预测评分时,往往是通过与其有正相关的用户或物品进行预测,如果不存在正相关的情况,那么将无法做出预测。在稀疏矩阵中尤为常见,因为稀疏评分矩阵中很难得出正相关系数。

如何计算评分预测?

  1. User-Based CF 评分预测:使用用户间的相似度进行预测
    用户本身的评分评分以及近邻用户的加权平均相似度打分来进行预测
    在这里插入图片描述
    我们要预测Thomas对AirPods的评分,那么可以根据与Thomas最近邻的Cauchy和Alice进行预测,计算如下:
    在这里插入图片描述
  2. Item-Based CF 评分预测:使用物品间的相似度进行预测
    结合预测物品与相似物品的加权平均相似度打分进行来进行预测
    在这里插入图片描述
    我们要预测Thomas对AirPods的评分,那么可以根据与AirPods最近邻的iPad和iWatch进行预测,计算如下:
    在这里插入图片描述

总结

User-Based CF预测评分和Item-Based CF的评分结果会存在差异,主要原因是他们其实是属于两种不同的推荐算法,各自在不同的领域与不同场景下,都会比另一种的效果更佳。如果是哪种是最佳评分,必须进行合理的效果评估,因此在实现推荐系统时这两种算法往往都是需要去实现的,然后对产生的推荐效果进行评估分析选出更优方案。

这篇关于协同过滤算法之连续评分通过皮尔逊相关系数计算相似度原理及代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/739273

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核