测试环境搭建整套大数据系统(三:搭建集群zookeeper,hdfs,mapreduce,yarn,hive)

本文主要是介绍测试环境搭建整套大数据系统(三:搭建集群zookeeper,hdfs,mapreduce,yarn,hive),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一:搭建zk

https://blog.csdn.net/weixin_43446246/article/details/123327143

二:搭建hadoop,yarn,mapreduce。

1. 安装hadoop。

sudo tar -zxvf hadoop-3.2.4.tar.gz -C /opt

2. 修改java配置路径。

cd /opt/hadoop-3.2.4/etc/hadoop
vim hadoop-env.sh
增加以下内容
export JAVA_HOME=/opt/jdk1.8.0_211
export HDFS_NAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root

java_home填写自己安装的路径。

3. 修改配置文件。

  1. vim core-site.xml

将以下信息填写到configuration中

		<property><name>fs.defaultFS</name><value>hdfs://10.15.250.196:8020</value></property><!-- 指定hadoop数据的存储目录 --><property><name>hadoop.tmp.dir</name><value>/opt/hadoop-3.2.4/data</value></property><!-- 该参数表示可以通过 httpfs 接口访问 HDFS 的 IP 地址限制 --><!-- 配置 root(超级用户) 允许通过 httpfs 方式访问 HDFS 的主机名、域名 --><property><name>hadoop.proxyuser.root.hosts</name><value>*</value></property><!-- 通过 httpfs 接口访问的用户获得的群组身份 --><!-- 配置允许通过 httpfs 方式访问的客户端的用户组 --><property><name>hadoop.proxyuser.root.groups</name><value>*</value></property>
  1. vim hdfs-site.xml
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>10.15.250.202:50090</value>
</property>
<property>
<name>dfs.namenode.secondary.https-address</name>
<value>10.15.250.202:50091</value>
</property>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
  1. vim mapred-site.xml
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<!-- 指定mapreduce jobhistory地址 -->
<property>
<name>mapreduce.jobhistory.address</name>
<value>10.15.250.196:10020</value>
</property>
<!-- 任务历史服务器的web地址 -->
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>10.15.250.196:19888</value>
</property>
<!-- 配置运行过的日志存放在hdfs上的存放路径 -->
<property>
<name>mapreduce.jobhistory.done-dir</name>
<value>/history/done</value>
</property>
<!-- 配置正在运行中的日志在hdfs上的存放路径 -->
<property>
<name>mapreudce.jobhistory.intermediate.done-dir</name>
<value>/history/done/done_intermediate</value>
</property>
<property>
<name>mapreduce.application.classpath</name>
<value>
/opt/hadoop-3.2.4/etc/hadoop,
/opt/hadoop-3.2.4/share/hadoop/common/*,
/opt/hadoop-3.2.4/share/hadoop/common/lib/*,
/opt/hadoop-3.2.4/share/hadoop/hdfs/*,
/opt/hadoop-3.2.4/share/hadoop/hdfs/lib/*,
/opt/hadoop-3.2.4/share/hadoop/mapreduce/*,
/opt/hadoop-3.2.4/share/hadoop/mapreduce/lib/*,
/opt/hadoop-3.2.4/share/hadoop/yarn/*,
/opt/hadoop-3.2.4/share/hadoop/yarn/lib/*
</value>
</property>
  1. vim yarn-site.xml
<!-- 开启RM高可用 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yarn-xdso</value>
</property>
<!-- 指定RM的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>10.15.250.196</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>10.15.250.220</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>10.15.250.196:8088</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>10.15.250.220:8088</value>
</property>
<!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>10.15.250.196:2181,10.15.250.202:2181,10.15.250.220:2181</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!-- 开启日志聚合 -->
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value>86400</value>
</property>
<!-- 启用自动恢复 -->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<!-- 制定resourcemanager的状态信息存储在zookeeper集群上 -->
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<!-- Whether virtual memory limits will be enforced for containers. -->
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>3</value>
</property>
<property>
<name>yarn.log.server.url</name>
<value>http://10.15.250.196:19888/jobhistory/logs/</value>
</property>
  1. vim workers
10.15.250.196
10.15.250.202
10.15.250.220

4. copy到其他节点。

cd /opt
scp -r hadoop-3.2.4/ root@hadoop101:`pwd`
scp -r hadoop-3.2.4/ root@hadoop101:`pwd`

5.三台机器全部配置环境变量。

#hadoop
export HADOOP_HOME=/opt/hadoop-3.2.4
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
source /etcprofile

6. 进行初始化,启动。

  1. 启动zk

三台机器全部执行

zkServer.sh start
  1. 在node01执行 格式化NameNode 。
 hdfs namenode -format
  1. 在node01执行 启动hdfs
 start-dfs.sh
  1. 在node01执行 启动yarn
start-yarn.sh
mr-jobhistory-daemon.sh start historyserver

7. 检验

jps在这里插入图片描述

登录页面查看
在这里插入图片描述
在这里插入图片描述

三:搭建hive

1. 提前安装mysql。

https://blog.csdn.net/weixin_43446246/article/details/135953602

2. 下载,解压hive。

wget https://dlcdn.apache.org/hive/hive-3.1.2/apache-hive-3.1.2-bin.tar.gz
tar -zxvf apache-hive-3.1.2-bin.tar.gz -C /opt

3. 配置文件

  1. 修改环境配置脚本文件 hive-env.sh
 cd /opt/apache-hive-3.1.2-bin/conf/cp hive-env.sh.template hive-env.shvim hive-env.sh
HADOOP_HOME=/opt/hadoop-3.2.4/
export HIVE_CONF_DIR=/opt/apache-hive-3.1.2-bin/conf
export HIVE_AUX_JARS_PATH=/opt/apache-hive-3.1.2-bin/lib
  1. 修改配置文件 hive-site.xml
 cp hive-default.xml.template hive-site.xmlvim hive-site.xml
<!-- 数据库相关配置 -->
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://10.15.250.196:3306/hive?createDatabaseIfNotExist=true</value>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.cj.jdbc.Driver</value>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>123456</value>
</property>
<!-- 自动创建表 -->
<property>
<name>datanucleus.schema.autoCreateAll</name>
<value>true</value>
</property>
<!-- 强制 MetaStore 的 schema 一致性,开启的话会校验在 MetaStore 中存储的信息的版本和 Hive 的 jar 包中的版本一致性,并且关闭自动
schema 迁移,用户必须手动的升级 Hive 并且迁移 schema。关闭的话只会在版本不一致时给出警告,默认是 false 不开启 -->
<!-- 元数据校验 -->
<property>
<name>hive.metastore.schema.verification</name>
<!-- MySQL8 这里一定要设置为 true,不然后面 DROP TABLE 可能会出现卡住的情况 -->
<value>true</value>
</property>
<!-- 美化打印数据 -->
<!-- 是否显示表名与列名,默认值为 false -->
<property>
<name>hive.cli.print.header</name>
<value>true</value>
</property>
<!-- 是否显示数据库名,默认值为 false -->
<property>
<name>hive.cli.print.current.db</name>
<value>true</value>
</property>
<!-- Hive 数据仓库的位置(HDFS 中的位置) -->
<property>
<name>hive.metastore.warehouse.dir</name>
<value>/hive/warehouse</value>
</property>
<!-- HiveServer2 通过 Thrift 访问 MetaStore -->
<!-- 配置 Thrift 服务绑定的服务器地址,默认为 127.0.0.1 -->
<!--
<property>
<name>hive.server2.thrift.bind.host</name>
<value>127.0.0.1</value>
</property>
-->
<!-- 配置 Thrift 服务监听的端口,默认为 10000 -->
<!--
<property>
<name>hive.server2.thrift.port</name>
<value>10000</value>
</property>
-->
<!-- HiveServer2 的 WEBUI -->
<property>
<name>hive.server2.webui.host</name>
<value>10.15.250.196</value>
</property>
<property>
<name>hive.server2.webui.port</name>
<value>10002</value>
</property>
<!-- 指定 hive.metastore.uris 的 port,为了启动 MetaStore 服务的时候不用指定端口 -->
<!-- hive ==service metastore -p 9083 & | hive ==service metastore -->
<property>
<name>hive.metastore.uris</name>
<value>thrift://10.15.250.196:9083</value>
</property>
  1. 配置日志组件,
mkdir /opt/apache-hive-3.1.2-bin/logs
cp hive-log4j2.properties.template hive-log4j2.properties
vim hive-log4j2.properties将 property.hive.log.dir = ${sys:java.io.tmpdir}/${sys:user.name} 替换为
property.hive.log.dir = /opt/yjx/apache-hive-3.1.2-bin/logs
  1. 添加驱动包
    将mysql驱动包,放到对应的目录下。
mv mysql-connector-java-8.0.18.jar /opt/apache-hive-3.1.2-bin/lib/

jar包冲突

cp /opt/hadoop-3.2.4/share/hadoop/common/lib/guava-27.0-jre.jar /opt/apache-hive-3.1.2-bin/lib/
rm /opt/apache-hive-3.1.2-bin/lib/guava-19.0.jar

5.copy到其他服务器上,三台配置环境变量。

cd /opt/
scp apache-hive-3.1.2-bin/ root@hadoop101:`pwd`
scp apache-hive-3.1.2-bin/ root@hadoop102:`pwd`

三台机器配置环境变量

vim /etc/profile
#hive
export HIVE_HOME=/opt/apache-hive-3.1.2-bin
export HIVE_CONF_DIR=$HIVE_HOME/bin
export PATH=$HIVE_HOME/bin:$PATH

6. 初始化。

  1. 检查mysql是否启动。
  2. 启动 ZooKeeper(三台机器都需要执行)。
  3. 启动 HDFS + YARN。
start-all.sh
  1. 启动 JobHistory。
mapred --daemon start historyserver
  1. 初始化 hive 数据库(第一次启动时执行)。
schematool -dbType mysql -initSchema
  1. 启动hive。
nohup hive --service metastore > /dev/null 2>&1 &
nohup hiveserver2 > /dev/null 2>&1 &

这篇关于测试环境搭建整套大数据系统(三:搭建集群zookeeper,hdfs,mapreduce,yarn,hive)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/738415

相关文章

java如何通过Kerberos认证方式连接hive

《java如何通过Kerberos认证方式连接hive》该文主要介绍了如何在数据源管理功能中适配不同数据源(如MySQL、PostgreSQL和Hive),特别是如何在SpringBoot3框架下通过... 目录Java实现Kerberos认证主要方法依赖示例续期连接hive遇到的问题分析解决方式扩展思考总

本地搭建DeepSeek-R1、WebUI的完整过程及访问

《本地搭建DeepSeek-R1、WebUI的完整过程及访问》:本文主要介绍本地搭建DeepSeek-R1、WebUI的完整过程及访问的相关资料,DeepSeek-R1是一个开源的人工智能平台,主... 目录背景       搭建准备基础概念搭建过程访问对话测试总结背景       最近几年,人工智能技术

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

centos7基于keepalived+nginx部署k8s1.26.0高可用集群

《centos7基于keepalived+nginx部署k8s1.26.0高可用集群》Kubernetes是一个开源的容器编排平台,用于自动化地部署、扩展和管理容器化应用程序,在生产环境中,为了确保集... 目录一、初始化(所有节点都执行)二、安装containerd(所有节点都执行)三、安装docker-

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

Mycat搭建分库分表方式

《Mycat搭建分库分表方式》文章介绍了如何使用分库分表架构来解决单表数据量过大带来的性能和存储容量限制的问题,通过在一对主从复制节点上配置数据源,并使用分片算法将数据分配到不同的数据库表中,可以有效... 目录分库分表解决的问题分库分表架构添加数据验证结果 总结分库分表解决的问题单表数据量过大带来的性能

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

如何在一台服务器上使用docker运行kafka集群

《如何在一台服务器上使用docker运行kafka集群》文章详细介绍了如何在一台服务器上使用Docker运行Kafka集群,包括拉取镜像、创建网络、启动Kafka容器、检查运行状态、编写启动和关闭脚本... 目录1.拉取镜像2.创建集群之间通信的网络3.将zookeeper加入到网络中4.启动kafka集群

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

鸿蒙开发搭建flutter适配的开发环境

《鸿蒙开发搭建flutter适配的开发环境》文章详细介绍了在Windows系统上如何创建和运行鸿蒙Flutter项目,包括使用flutterdoctor检测环境、创建项目、编译HAP包以及在真机上运... 目录环境搭建创建运行项目打包项目总结环境搭建1.安装 DevEco Studio NEXT IDE