OpenCV的SIFT特征点提取及RANSAC去除误检测

2024-02-22 20:18

本文主要是介绍OpenCV的SIFT特征点提取及RANSAC去除误检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于SIFT的讲解,参考:http://blog.csdn.net/zddblog/article/details/7521424
关于SANCAS的讲解,参考:http://blog.csdn.net/laobai1015/article/details/51682596

SIFT(Scale Invariant Feature Transform)多尺度特征点提取算法在nonfree文件内集成。
RANSAC(Random Sample Consensus随机抽样一致算法在calib3d文件内集成。

主要的思路是:
(1)利用SiftFeatureDetector类对象提取SIFT特征点;
(2)利用SiftDescriptorExtractor类对象进行特征点的特征提取;
(3)利用BFMatcher类对象实现初步匹配;
(注意:在第3步中,实际上已经完成SIFT特征点的提取与匹配,但是会有较多的无匹配,因此后面的步骤主要思路是利用RANSAC方法去除误匹配)
(4)利用2-范数特征阈值初步筛选去除误匹配;
(6)利用findFundamentalMat函数实现RANSAC算法。
文件头如下:
  1. #include <opencv2/opencv.hpp>  
  2. #include <iostream>  
  3. #include <opencv2/nonfree/nonfree.hpp>  
  4. #include <opencv2/features2d/features2d.hpp>  
代码如下:
  1. Mat Limg = imread("Limage.png", CV_LOAD_IMAGE_ANYDEPTH);  
  2. Mat Rimg = imread("Rimage.png", CV_LOAD_IMAGE_ANYDEPTH);  
  3. // detecting keypoints  
  4. SiftFeatureDetector detector(0, 3, 0.04, 10, 1.6);  
  5. // (特征点数目-按sift特征质量排序,金字塔中每组的层数,过滤的阈值,边缘效应阈值,高斯滤波系数)  
  6. vector<KeyPoint> Lkeypoints, Rkeypoints;  
  7. detector.detect(Limg, Lkeypoints);  
  8. detector.detect(Rimg, Rkeypoints);  
  9. // computing descriptors  
  10. // SiftDescriptorExtractor extractor;  
  11. SiftDescriptorExtractor extractor;  
  12. Mat Ldescriptors, Rdescriptors;  
  13. extractor.compute(Limg, Lkeypoints, Ldescriptors);  
  14. extractor.compute(Rimg, Rkeypoints, Rdescriptors);  
  15. // matching descriptors  
  16. BFMatcher matcher(NORM_L1);  //> 对应sift  
  17. vector<DMatch> matches;  
  18. matcher.match(Ldescriptors, Rdescriptors, matches);  
  19. //   
  20. namedWindow("matches", CV_WINDOW_FREERATIO);  
  21. Mat img_matches;  
  22. drawMatches(Limg, Lkeypoints, Rimg, Rkeypoints, matches, img_matches);  
  23. imshow("matches", img_matches);  
  24. // coordination of match-feature-point  
  25. vector<Point2f> Lp, Rp;  
  26. for (size_t m = 0; m < matches.size(); m++)  
  27. {  
  28.     int i1 = matches[m].queryIdx;  
  29.     int i2 = matches[m].trainIdx;  
  30.     Mat Ldesc = Ldescriptors.row(i1);  
  31.     Mat Rdesc = Rdescriptors.row(i2);  
  32.     double EuclideanDist = norm(Ldesc, Rdesc);  
  33.     if (EuclideanDist <= 50)  
  34.     {  
  35.         const KeyPoint &kp1 = Lkeypoints[i1], &kp2 = Rkeypoints[i2];  
  36.         Lp.push_back(kp1.pt);  
  37.         Rp.push_back(kp2.pt);  
  38.     }  
  39. }  
  40. // 用RANSAC方法计算基本矩阵&去除误匹配    
  41. Mat Fundamental;  
  42. vector<uchar> RANSACStatus;  
  43. Fundamental = findFundamentalMat(Lp, Rp, RANSACStatus, CV_FM_RANSAC, 3.0, 0.995);  
  44. // 筛选特征点  
  45. vector<Point2f> Lpoint, Rpoint;  
  46. vector<DMatch> m_match;  
  47. int idxnum = 0;  
  48. for (int i = 0; i < RANSACStatus.size(); i++)  
  49. {  
  50.     if (RANSACStatus[i] != 0)  
  51.     {  
  52.         Lpoint.push_back(Lp[i]);  
  53.         Rpoint.push_back(Rp[i]);  
  54.         idxnum++;  
  55.     }  
  56. }     
  57. m_match.resize(idxnum);  
  58. for (int idx = 0; idx < idxnum; idx++)  
  59. {  
  60.     // 用于匹配验证  
  61.     m_match[idx].queryIdx = idx;  
  62.     m_match[idx].trainIdx = idx;  
  63. }  
  64. // 把内点转换为drawMatches可以使用的格式    
  65. vector<KeyPoint> Lkp(idxnum);  
  66. vector<KeyPoint> Rkp(idxnum);  
  67. KeyPoint::convert(Lpoint, Lkp);  
  68. KeyPoint::convert(Rpoint, Rkp);  
  69. // 显示筛选后的特征点  
  70. namedWindow("m_match", CV_WINDOW_FREERATIO);  
  71. Mat m_matches;  
  72. drawMatches(Limg, Lkp, Rimg, Rkp, m_match, m_matches);  
  73. imshow("m_match", m_matches);  
其中,
第20-23行展示的是SIFT特征点经过BFMatch之后的结果,一般来说误匹配较多,效果不理想;
第70-73行展示的是SIFT特征点经过RANSAC之后的结果,一般来说效果好很多。


这篇关于OpenCV的SIFT特征点提取及RANSAC去除误检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/736386

相关文章

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

树莓派5_opencv笔记27:Opencv录制视频(无声音)

今日继续学习树莓派5 8G:(Raspberry Pi,简称RPi或RasPi)  本人所用树莓派5 装载的系统与版本如下:  版本可用命令 (lsb_release -a) 查询: Opencv 与 python 版本如下: 今天就水一篇文章,用树莓派摄像头,Opencv录制一段视频保存在指定目录... 文章提供测试代码讲解,整体代码贴出、测试效果图 目录 阶段一:录制一段