C#,数值计算,矩阵的乔莱斯基分解(Cholesky decomposition)算法与源代码

本文主要是介绍C#,数值计算,矩阵的乔莱斯基分解(Cholesky decomposition)算法与源代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、安德烈·路易斯·乔尔斯基

安德烈·路易斯·乔尔斯基出生于法国波尔多以北的查伦特斯海域的蒙古扬。他在波尔多参加了Lycée e,并于1892年11月14日获得学士学位的第一部分,于1893年7月24日获得第二部分。1895年10月15日,乔尔斯基进入莱科尔理工学院,在当年223名入学学生中排名第88位。他在莱科尔理工学院的教授包括卡米尔·乔丹和发现放射性的著名物理学家亨利·贝克勒尔。在成功的两年后,他于1897年参加了莱科尔理工学院的期末考试。在222名学生中,他提高了自己的地位,在这些考试中排名第38位。随后,他加入军队,成为少尉,并从1897年10月开始在炮兵学校学习。他在1899年完成了学业,并保持了稳步的进步,因为现在他在那一年获得资格的86名学生中排名第五。

突尼斯当时仍然是奥斯曼帝国的正式一部分,但在1883年突尼斯和法国政府签署的《马尔萨公约》之后,它一直是法国的保护国。法国人稳定了经济,建立了现代通讯。从1902年1月到6月,乔尔斯基在突尼斯执行了一项任务,然后从1902年11月到1903年5月,他被派去执行第二项任务。1903年12月31日,乔尔斯基开始在阿尔及利亚服役。那个国家从法国得到的待遇比突尼斯少得多。法国人建立了对该国及其原住民的统治,但发展了新的通讯、医院和医疗服务。他于1904年6月6日离开阿尔及利亚。

乔尔斯基职业生涯中最重要的一步是他于1905年6月进入陆军地理服务部测地部门,据报道他在那里:-

... 他有敏锐的智力和出色的数学能力,有探究精神和独创性的想法。

德拉姆布雷在1798年春天完成了基线测量,这是他对定义米的贡献的一部分。1882年,法国专家回到了德拉姆布雷的基线,但没有重新测量它,而是倾向于通过三角测量间接检查德拉姆布雷的计算。20世纪第一个十年,巴黎子午线修订后,计划对法国进行新的三角测量。调整网格的问题让地理服务部门的官员非常担忧,他们迫切希望找到一种简单、快速、准确的方法。为了用最小二乘法求解条件方程,Cholesky发明了一个非常巧妙的计算程序,该程序立即被证明非常有用:它现在被称为Cholesky方法,我们将在下面描述它。1905年9月26日,他成为中尉,两年后于1907年5月10日结婚。乔尔斯基和他的妻子有三个孩子;一个儿子和两个女儿。

克里特岛是奥斯曼帝国的一部分已经有200年了,但随着帝国的衰落,欧洲的主要国家打算参与克里特岛的未来。1896年,克里特岛发生了一场反对土耳其人的革命,之后希腊试图取得控制权,列强强行达成了和解。法国人负责西蒂亚区,意大利人负责伊拉佩特拉区,英国人负责伊拉克利安区,俄罗斯人负责雷瑟姆农区,而四人共同负责查尼亚区。法国军队在克里特岛的司令部鲁班斯基上校曾是测地学家,希望在岛上进行测绘工作。1906年3月和4月,测地科长布尔乔亚中校进行了初步侦察。乔尔斯基于1907年11月7日被派往克里特岛,作为执行任务的三名军官之一。他在卡沃西平原测量了基线,并使用天文测量来确定基线南端的精确位置。在他的同事被派去执行其他任务后,乔尔斯基进行了三角测量,并对法国和英国的区域进行了地形测量。他在极其困难的条件下成功地进行了三角测量,因为克里特岛冬季高山上降雪量很大。然而,政治事件阻止了土地调查的进行,乔莱斯基于1908年6月25日离开克里特岛。

1909年3月25日,他被任命为第二步兵团团长,并于1909年9月至1911年9月随部队执行任务。1911年晚些时候,他回到了陆军地理服务局的测地部门,并被分配到阿尔及利亚和突尼斯工作,七年前他已经在那里积累了经验。从1911年10月27日至1912年4月24日,再从1912年10月23日至1913年4月17日,他在阿尔及利亚和突尼斯进行了精密水准测量工作。这项工作旨在为修建铁路线做准备。突尼斯的电网建设于1913-1914年冬季完成,之后有一段时间进行检查和调整。在摩洛哥也必须进行类似的工作,Cholesky设计了一些方法,使工作能够更快地进行,但仍然保持必要的准确性。在测试了他的程序后,这些程序于1912年7月开始在摩洛哥使用,工作于1913年1月完成。

1913年5月25日,乔莱斯基被分配到外交部,并被任命为突尼斯摄政区地形局局长。他开始在那里工作,但在1914年秋天第一次世界大战爆发后,他被调到其他地方工作。1915年1月,他开始组织火炮射击,2月被派往沃斯的一个部队工作。1916年9月,他被派往罗马尼亚执行军事任务,在那里担任罗马尼亚军队地理服务处处长。他于1917年7月晋升,并继续在罗马尼亚服役至1918年2月。

乔莱斯基于1918年8月31日凌晨5点在法国北部的战场上受伤身亡。在他死后,他的一位同事,贝诺伊特司令,在《自然推断法中线性方程组解析法的起源》一书中发表了乔尔斯基的计算方法,以解决一些最小二乘数据拟合问题。应用méthodeála resolution d'un Systemème Definition d'quations lineaires(首席检察官Cholesky)Ⓣ, 发表于1924年的公报géodesique。

Cholesky分解(或Cholesky分解)采用对称正定矩阵AA,并将其写成a=LL'a=LL′

其中,LL是一个下三角矩阵,具有正对角项(有时称为Cholesky三角形),L'L′

是LL的转置。要解Ax=bsolveAx=b,现在需要解LL'x=bLL′

x=b所以把y=L'xy=L′

x表示Ly=bLy=b,解为yy,然后y=L'xy=L′

对x进行求解,得到解。该方法的优点在于,当MM是三角形矩阵时,求解Mx=bMx=b型方程非常简单。

该方法在1924年出版后很少受到关注,但杰克·托德在二战期间将其纳入了伦敦国王学院的分析课程。1948年,福克斯、赫斯基和威尔金森在一篇论文中对该方法进行了分析,而图灵在同一年发表了一篇关于该方法稳定性的论文。

二、斯基分解(Cholesky decomposition)

矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积,可分为三角分解、满秩分解、QR分解、Jordan分解和SVD(奇异值)分解等,常见的有三种:
(1)三角分解法 (Triangular Factorization)
(2)QR 分解法 (QR Factorization)
(3)奇异值分解法 (SVD,Singular Value Decomposition)
 

三角分解法亦称因子分解法,由消元法演变而来的解线性方程组的一类方法。设方程组的矩阵形式为Ax=b,三角分解法就是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U之积:A=LU,然后依次解两个三角形方程组Ly=b和Ux=y,而得到原方程组的解,例如,杜利特尔分解法、乔莱斯基分解法等就是三角分解法。

乔莱斯基分解法(Cholesky decomposition method),亦称平方根法,属于三角分解法之一。

楚列斯基分解(Cholesky decomposition)是1993年公布的数学名词。

乔莱斯基乔里斯基分解,同。

using System;
using System.Collections;
using System.Collections.Generic;namespace Legalsoft.Truffer.Algorithm
{/// <summary>/// 乔莱斯基分解/// </summary>public static partial class Algorithm_Gallery{public static int[,] Cholesky_Decomposition(int[,] matrix){int n = matrix.GetLength(0);int[,] lower = new int[n, n];for (int i = 0; i < n; i++){for (int j = 0; j <= i; j++){int sum = 0;if (j == i){for (int k = 0; k < j; k++){sum += (int)Math.Pow(lower[j, k], 2);}lower[j, j] = (int)Math.Sqrt(matrix[j, j] - sum);}else{for (int k = 0; k < j; k++){sum += (lower[i, k] * lower[j, k]);}lower[i, j] = (matrix[i, j] - sum) / lower[j, j];}}}return lower;}}
}

这篇关于C#,数值计算,矩阵的乔莱斯基分解(Cholesky decomposition)算法与源代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/734647

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调