当AI遇上人形机器人,产业化元年正式开启?

2024-02-20 12:28

本文主要是介绍当AI遇上人形机器人,产业化元年正式开启?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回望2023年,人形机器人赛道好不热闹,受政策支持、AI技术突破、投资热潮等利好因素共同影响,众多玩家纷纷入局加码发力。在整个赛道持续爆炒之下,行业也迅速站上了产业风口。

其实,从很多方面来看,机器人行业站上风口并非偶然,而是多年来行业内外各种技术成熟带来的必然结果。

人形机器人迎来AI产业东风

早在1973年,日本早稻田大学加藤一郎,就带领团队研发出了世界第一台真人大小的人形智能机器人—WABOT-1。然而,到今天为止半个世纪过去了,事关机器人的商业化依然遥遥无期,究其根本,成本、性能这些仍是最基本的核心阻力。具体来看,机器人由运动模块、传感模块和人工智能模块,三个关键技术模块组成。

对于一般的传统机器人来说,只需要其中一种技术往往就已经具备使用价值了。比如,工业机器人主要侧重于运动控制技术,扫地机器人则侧重于导航传感技术。相比之下,人形机器人的通用性要求则更高,其在应用上超越了以往机器人仅仅适用于特定场景的局限,而被更多应用于其他场景之中。如此一来,其技术的复杂性就开始指数级倍增,其不仅需要强大的数据建模,还要对语言和指令有强大的理解力。但AI大模型的突破,让这些从前看似不可能解决的问题,逐渐有了全新的解法。

大模型从之前的Transformer再到GPT-4,随着模型的参数量不断呈现指数级跃迁,大模型也从之前的文本,逐渐走到语音、视觉等多模态融合的通用AI方向发展,这也让人形机器人与语音、视觉、决策和控制等融合起来,以提升人形机器人的能力值成为可能。其实放在整个行业来看,这只是AI助力机器人行业核心技术加快突破的一个方面,其更多体现在AI助力机器人具形化。

首先,是通过强调AI的泛化能力,基于对人类动作的模仿,使得人形机器人具备自主决策、自主学习升级的能力,以提升任务的完整性和连贯性。其次,是末端执行能力。强调灵巧机器手的操作精度,在中央分析器“大脑”的运算决策下,人形机器人的动作输出应精准、降低失误率,提升任务完成的正确性和准确性。最后,基于感知的运动控制能力:强调底盘的全地形移动能力,类似自动驾驶,人形机器人应基于对周围环境的感知实现,对自身的运动控制,增强全移动操作能力,提升任务完成的时效性。

总之,借助AI技术,传统困扰人形机器人发展的诸多困难,逐渐得到一一破解。

新问题接踵而至

从行业来看,底层技术的高速进化,让外界开始重新审视这个陌生又熟悉的赛道。但就人形机器人的真正产业化进程来看,其距离真正进入千家万户还有一段路要走。

首先,是对人形机器人智能化起至关重要的数据,仍存在局限。ChatGPT之所以能够在短时间内快速迭代,是因为互联网上已经沉淀了大量公域的数据,可供其直接抓取使用,人形机器人则不然,现实中的机器人保有量本就很少,可用于收集数据的机器人就更少了,这样人形机器人的数据采集,自然就成了问题。特别是考虑到各个机器人厂商之间为了保护自家数据,互设壁垒、自建围墙,这种各自为战的状态,无疑又加大了数据获取的难度,进而影响到各家机器人的迭代。

​事实上,目前汇集全球34个机器人实验室的60多个现有数据集,就包含从22种机器人上采集的超过15万个任务的上百万条数据,谷歌开源的机器人训练数据集Open X-Embodiment,可以说是机器人模型领域的一面旗帜,但该数据集主要针对的仍是一些常规操作,在全身肢体协调、行走平衡等方面依然会有所欠缺。

其次,受到算力的制约,目前人形机器人根本无法实时响应命令。通用人形机器人在控制周期上,需要达到500Hz的水平,而目前谷歌研发的RT-2模型,在机器人控制周期上只能达到3Hz,差了两个数量级还多。最后也是最重要的,就是成本,现在动不动几万美金的售价,根本不支持在C端大面积普及。以此来看,人形机器人目前的进展仍然非常有限。

国产替代按下加速键

事实上,随着国内市场的火热,国内人形机器人产业加速替代的风潮,更是一浪赛过一浪,国产化替代正式按下加速键。

首先,从需求端来看,随着国内人力成本的逐渐攀升,国内对机器人的需求逐渐上升,这在一定程度上激发了企业参与机器人的热情。纵观主要发达国家的情况不难发现,自上世纪90年代以来,随着发达国家劳动力成本不断攀升,机器人产业曾经有过一段比较快速的发展。但随着主要发展中国家加入WTO,其人口红利逐渐释放,全球产业迎来巨大的发展。

但如今随着主要发展中国家如中国,劳动力成本的逐渐提升,世界范围内围绕机器人的产业革新,正逐渐成为一种趋势。毕竟,客观上来看,中国国内的产业链转移不可避免,但放眼全世界,能够像中国这样拥有大量高素质劳动力群体的国家并不多,更找不到这样高度稳定的社会环境。最近几年,虽然中国的部分低端产业转移到了东南亚,但实际效果不及预期。在这种情况下,寄希望于留在中国的供应商,纷纷将主要精力放在了机器人上,这客观上助推了中国机器人产业的发展。

其次,从技术与产业来看,国内有足够多的优质潜力供应商和应用场景,这是国内实现国产替代的核心关键。从人形机器人的具体构成来看,其主要涉及到减速器、伺服、控制器等,其合计占工业机器人成本的70%,考虑到机器人关节和自由度更多,其实际的占比可能会更高。

而在这些方向上,国产供应商也已经崭露头角,比如减速器领域,就有大族传动、来福谐波、

同川科技、中大力德、绿的谐波等众多上市公司,其中绿的谐波已经形成良性循环,作为一家制造企业,其净利润率已经做到了30%以上堪称奇迹。伺服领域,汇川技术的预期较高,其一家就在国内伺服领域占据21.5%的市占率。控制器领域,目前虽然未形成强势供应商企业,但产业中并不乏替代者。应用场景方面,国内人口规模巨大、制造业发达,不管是B端还是C端消费,机器人都有巨大的应用场景,这是人形机器人在国内国产替代的先天机遇。

总之,在各方面因素的推动下,人形机器人的国产替代也进入加速期。

2024,人形机器人春天已到?

在行业快速发展之下,业内不时传来2024是机器人元年的说法。不过,从行业现状来看,2024年只能算是人形机器人小规模落地的一年,距离真正的产业元年还有差距。

首先,从行业来看人形机器人所涉及的技术面非常复杂,没办法一蹴而就。在业内人士看来,过去一年的确是行业变化较快的一年,但行业距离真正的爆发却仍然有不少差距,因为到目前为止,行业内也并没有太多的本质变化,这主要是因为人形机器人,涉及到了高端制造、人工智能等诸多领域,其技术广度和深度都非同一般。

别的且不说,就说刚刚上市的机器人公司优必选,其从2012年发展至今已经有10多年了,但其无论是在核心技术还是在产业化方面,仍在持续投入。对于当下的行业来说,更重要的是利用巨大的关注,沉下心来做好技术和产业的迭代,将更多资源投在一些核心技术研发,以及卡脖子的关键研究上去,真正实现从研发到产品,再到应用、服务的整个商业闭环。

其次,就是涉及到人形机器人具身智能的数据、硬件成本等问题,仍需要时间去解决。具体到大模型方面来说,前文提到目前适用于各种智能的数据都很少,而且无论是云端还是边缘侧,都涉及到巨大的算力消耗,各种适用于各类场景的泛化理解的解决,也需要时间来完成。

另外,从驱动器、减速器、关节、灵巧手等,企业都需要成熟的供应商磨合,去迭代和控制成本,这在目前都不成熟。

而在具体的技术上,机器人行业的问题集中在硬件的标准化,以及操作算法的范式上。在可预见的未来,硬件的标准化或将成为推动行业降本的核心抓手。尽管当下来看,人类关于机器人的理想与现实,早已经变得视线模糊了,但理想与现实终究还是有着一线之隔,这种纠葛决定了机器人产业化之路,并不能非常快的在产业内完成。

这篇关于当AI遇上人形机器人,产业化元年正式开启?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/728206

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

hadoop开启回收站配置

开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。 开启回收站功能参数说明 (1)默认值fs.trash.interval = 0,0表示禁用回收站;其他值表示设置文件的存活时间。 (2)默认值fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为0,则该值设置和fs.trash.interval的参数值相等。

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU