FPFH特征描述符、对应关系可视化以及ICP配准

2024-02-19 05:52

本文主要是介绍FPFH特征描述符、对应关系可视化以及ICP配准,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、FPFH特征描述符可视化

C++

#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/search/kdtree.h>
#include <pcl/io/pcd_io.h>
#include <pcl/features/normal_3d_omp.h>//使用OMP需要添加的头文件
#include <boost/thread/thread.hpp>
#include <pcl/features/3dsc.h>
#include <pcl/visualization/pcl_plotter.h>// 直方图的可视化 
#include <pcl/visualization/histogram_visualizer.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/features/fpfh_omp.h>
using namespace std;
int main()
{//------------------加载点云数据-----------------pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);if (pcl::io::loadPCDFile<pcl::PointXYZ>("pcd/pig_view1.pcd", *cloud) == -1)//需使用绝对路径{PCL_ERROR("Could not read file\n");}//--------------------计算法线------------------pcl::NormalEstimationOMP<pcl::PointXYZ, pcl::Normal> n;//OMP加速pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);//建立kdtree来进行近邻点集搜索pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);n.setNumberOfThreads(8);//设置openMP的线程数n.setInputCloud(cloud);n.setSearchMethod(tree);n.setKSearch(20);n.compute(*normals);//开始进行法向计算// ------------------FPFH图像计算------------------pcl::FPFHEstimationOMP<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> f;pcl::PointCloud<pcl::FPFHSignature33>::Ptr fpfh_images(new pcl::PointCloud<pcl::FPFHSignature33>());f.setNumberOfThreads(12);f.setInputCloud(cloud);f.setInputNormals(normals);f.setSearchMethod(tree);f.setKSearch(30);f.compute(*fpfh_images);cout << "FPFH图像计算计算完成" << endl;// 显示和检索第一点的自旋图像描述符向量。pcl::FPFHSignature33 first_descriptor = fpfh_images->points[0];cout << first_descriptor << endl;pcl::visualization::PCLPlotter plotter;plotter.addFeatureHistogram(*fpfh_images, 200); //设置的横坐标长度,该值越大,则显示的越细致plotter.setWindowName("FPFH Image");plotter.plot();return 0;
}

关键代码解析:

    pcl::FPFHEstimationOMP<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> f;pcl::PointCloud<pcl::FPFHSignature33>::Ptr fpfh_images(new pcl::PointCloud<pcl::FPFHSignature33>());f.setNumberOfThreads(12);f.setInputCloud(cloud);f.setInputNormals(normals);f.setSearchMethod(tree);f.setKSearch(30);f.compute(*fpfh_images);cout << "FPFH图像计算计算完成" << endl;// 显示和检索第一点的自旋图像描述符向量。pcl::FPFHSignature33 first_descriptor = fpfh_images->points[0];cout << first_descriptor << endl;pcl::visualization::PCLPlotter plotter;plotter.addFeatureHistogram(*fpfh_images, 200); //设置的横坐标长度,该值越大,则显示的越细致plotter.setWindowName("FPFH Image");plotter.plot();

 

  1. pcl::FPFHEstimationOMP<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> f;

    • 这一行定义了一个FPFH特征估计器对象f,使用了OMP(Open Multi-Processing)进行多线程计算。指定了输入点云类型为pcl::PointXYZ,输入法向量类型为pcl::Normal,以及输出特征类型为pcl::FPFHSignature33
  2. pcl::PointCloud<pcl::FPFHSignature33>::Ptr fpfh_images(new pcl::PointCloud<pcl::FPFHSignature33>());

    • 创建一个指向pcl::PointCloud<pcl::FPFHSignature33>类型的智能指针fpfh_images,用于存储计算得到的FPFH特征。
  3. f.setNumberOfThreads(12);

    • 设置用于计算FPFH特征的线程数。这里设置为12,以充分利用多核处理器的性能。线程数的选择应该考虑到计算机的硬件配置,过多的线程可能导致性能下降。
  4. f.setInputCloud(cloud);

    • 将点云数据设置为FPFH估计器的输入。cloud是一个指向pcl::PointCloud<pcl::PointXYZ>类型的指针,表示原始点云数据。
  5. f.setInputNormals(normals);

    • 将法向量数据设置为FPFH估计器的输入。normals是一个指向pcl::PointCloud<pcl::Normal>类型的指针,表示点云中每个点的法向量数据。
  6. f.setSearchMethod(tree);

    • 设置搜索方法。tree是一个用于加速邻域搜索的数据结构,例如kd-tree或octree。这个参数可以根据点云的大小和分布来调整,以获得更好的性能。
  7. f.setKSearch(30);

    • 设置用于计算FPFH特征的近邻点数目。这个参数影响着计算的邻域大小,值越大则考虑的邻域越大,特征描述更全局。
  8. f.compute(*fpfh_images);

    • 运行FPFH特征的计算过程。该方法会根据输入的点云和法向量数据以及设置的搜索参数来计算每个点的FPFH特征,并将结果存储在fpfh_images中。
  9. cout << "FPFH图像计算计算完成" << endl;

    • 打印消息,指示FPFH特征计算完成。
  10. pcl::FPFHSignature33 first_descriptor = fpfh_images->points[0];

    • 提取第一个点的FPFH特征描述符。这里假设点云中至少有一个点。
  11. cout << first_descriptor << endl;

    • 打印第一个点的FPFH特征描述符。
  12. pcl::visualization::PCLPlotter plotter;

    • 创建一个PCL绘图器对象,用于可视化FPFH特征。
  13. plotter.addFeatureHistogram(*fpfh_images, 200);

    • 向绘图器中添加FPFH特征的直方图。第二个参数指定了横坐标的长度,该值越大,显示的越细致。
  14. plotter.setWindowName("FPFH Image");

    • 设置绘图窗口的名称。
  15. plotter.plot();

    • 显示绘图器中的图像。

总的来说,这段代码的作用是计算并可视化点云的FPFH特征。参数的设置会直接影响特征的计算和可视化效果,因此需要根据具体的数据和需求进行调整。

结果:

二、FPFH对应关系可视化

C++

#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/io/pcd_io.h>
#include <pcl/features/normal_3d_omp.h>
#include <pcl/features/fpfh_omp.h>
#include <pcl/registration/correspondence_estimation.h>
#include <boost/thread/thread.hpp>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/registration/transformation_estimation_svd.h> typedef pcl::PointCloud<pcl::PointXYZ> pointcloud;
typedef pcl::PointCloud<pcl::Normal> pointnormal;
typedef pcl::PointCloud<pcl::FPFHSignature33> fpfhFeature;fpfhFeature::Ptr compute_fpfh_feature(pointcloud::Ptr input_cloud, pcl::search::KdTree<pcl::PointXYZ>::Ptr tree)
{pointnormal::Ptr normals(new pointnormal);pcl::NormalEstimationOMP<pcl::PointXYZ, pcl::Normal> n;n.setInputCloud(input_cloud);n.setNumberOfThreads(12);n.setSearchMethod(tree);n.setKSearch(20);n.compute(*normals);fpfhFeature::Ptr fpfh(new fpfhFeature);pcl::FPFHEstimationOMP<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> f;f.setNumberOfThreads(12);f.setInputCloud(input_cloud);f.setInputNormals(normals);f.setSearchMethod(tree);f.setKSearch(30);f.compute(*fpfh);return fpfh;
}int main(int argc, char** argv)
{pointcloud::Ptr source_cloud(new pointcloud);pointcloud::Ptr target_cloud(new pointcloud);pcl::io::loadPCDFile<pcl::PointXYZ>("pcd/pig_view1.pcd", *source_cloud);pcl::io::loadPCDFile<pcl::PointXYZ>("pcd/pig_view2.pcd", *target_cloud);pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());fpfhFeature::Ptr source_fpfh = compute_fpfh_feature(source_cloud, tree);fpfhFeature::Ptr target_fpfh = compute_fpfh_feature(target_cloud, tree);pcl::registration::CorrespondenceEstimation<pcl::FPFHSignature33, pcl::FPFHSignature33> crude_cor_est;boost::shared_ptr<pcl::Correspondences> cru_correspondences(new pcl::Correspondences);crude_cor_est.setInputSource(source_fpfh);crude_cor_est.setInputTarget(target_fpfh);crude_cor_est.determineCorrespondences(*cru_correspondences, 0.4);Eigen::Matrix4f Transform = Eigen::Matrix4f::Identity();pcl::registration::TransformationEstimationSVD<pcl::PointXYZ, pcl::PointXYZ, float>::Ptr trans(new pcl::registration::TransformationEstimationSVD<pcl::PointXYZ, pcl::PointXYZ, float>);trans->estimateRigidTransformation(*source_cloud, *target_cloud, *cru_correspondences, Transform);cout << "变换矩阵为:\n" << Transform << endl;boost::shared_ptr<pcl::visualization::PCLVisualizer>viewer(new pcl::visualization::PCLVisualizer("v"));viewer->setBackgroundColor(0, 0, 0);// 对目标点云着色可视化 (red).pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ>target_color(target_cloud, 255, 0, 0);viewer->addPointCloud<pcl::PointXYZ>(target_cloud, target_color, "target cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "target cloud");// 对源点云着色可视化 (green).pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ>input_color(source_cloud, 0, 255, 0);viewer->addPointCloud<pcl::PointXYZ>(source_cloud, input_color, "input cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "input cloud");//对应关系可视化viewer->addCorrespondences<pcl::PointXYZ>(source_cloud, target_cloud, *cru_correspondences, "correspondence");//viewer->initCameraParameters();while (!viewer->wasStopped()){viewer->spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(100000));}return 0;
}

关键代码解析:

    pcl::registration::CorrespondenceEstimation<pcl::FPFHSignature33, pcl::FPFHSignature33> crude_cor_est;boost::shared_ptr<pcl::Correspondences> cru_correspondences(new pcl::Correspondences);crude_cor_est.setInputSource(source_fpfh);crude_cor_est.setInputTarget(target_fpfh);crude_cor_est.determineCorrespondences(*cru_correspondences, 0.4);Eigen::Matrix4f Transform = Eigen::Matrix4f::Identity();pcl::registration::TransformationEstimationSVD<pcl::PointXYZ, pcl::PointXYZ, float>::Ptr trans(new pcl::registration::TransformationEstimationSVD<pcl::PointXYZ, pcl::PointXYZ, float>);trans->estimateRigidTransformation(*source_cloud, *target_cloud, *cru_correspondences, Transform);
  1. pcl::registration::CorrespondenceEstimation<pcl::FPFHSignature33, pcl::FPFHSignature33> crude_cor_est;

    • 创建了一个用于估计FPFH特征之间对应关系的对象crude_cor_est。这个对象的类型是pcl::registration::CorrespondenceEstimation,它用于估计两个点云之间的对应关系。
  2. boost::shared_ptr<pcl::Correspondences> cru_correspondences(new pcl::Correspondences);

    • 创建了一个指向pcl::Correspondences类型的智能指针cru_correspondences,用于存储对应关系。
  3. crude_cor_est.setInputSource(source_fpfh);

    • 设置源点云的FPFH特征作为对应关系估计的输入。source_fpfh是指向源点云的FPFH特征的指针。
  4. crude_cor_est.setInputTarget(target_fpfh);

    • 设置目标点云的FPFH特征作为对应关系估计的目标。target_fpfh是指向目标点云的FPFH特征的指针。
  5. crude_cor_est.determineCorrespondences(*cru_correspondences, 0.4);

    • 使用设定的FPFH特征对两个点云之间的对应关系进行估计。第二个参数0.4是一个阈值,用于控制匹配的严格度。更高的值会导致更宽松的匹配。
  6. Eigen::Matrix4f Transform = Eigen::Matrix4f::Identity();

    • 创建一个4x4的单位矩阵,用于存储刚性变换。
  7. pcl::registration::TransformationEstimationSVD<pcl::PointXYZ, pcl::PointXYZ, float>::Ptr trans(new pcl::registration::TransformationEstimationSVD<pcl::PointXYZ, pcl::PointXYZ, float>);

    • 创建了一个用于估计刚性变换的对象trans。这里使用了SVD(奇异值分解)方法进行刚性变换的估计。
  8. trans->estimateRigidTransformation(*source_cloud, *target_cloud, *cru_correspondences, Transform);

    • 使用对应关系和源点云以及目标点云之间的FPFH特征,估计两个点云之间的刚性变换。这个变换会被存储在Transform中。

参数的设置会影响配准的结果。例如,对应关系估计的阈值会影响匹配的严格度,而刚性变换的估计方法则会影响配准的准确度和鲁棒性。需要根据具体的应用场景和数据特点来选择合适的参数值

结果:

三、3DSC结合ICP配准  

C++

#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/features/normal_3d_omp.h>
#include <pcl/features/spin_image.h>
#include <pcl/registration/icp.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <boost/thread/thread.hpp>
#include <pcl/keypoints/iss_3d.h>
#include <pcl/registration/ia_ransac.h>
#include <pcl/visualization/pcl_plotter.h>
#include <pcl/features/fpfh_omp.h>
typedef pcl::PointXYZ PointT;
typedef pcl::PointCloud<PointT> PointCloud;
typedef pcl::FPFHSignature33 FPFHT;
typedef pcl::PointCloud<FPFHT> PointCloudfpfh;
typedef pcl::search::KdTree<PointT> Tree;// 关键点提取
void extract_keypoint(PointCloud::Ptr& cloud, PointCloud::Ptr& keypoint, Tree::Ptr& tree)
{pcl::ISSKeypoint3D<PointT, PointT> iss;iss.setInputCloud(cloud);iss.setSearchMethod(tree);iss.setNumberOfThreads(8);     //初始化调度器并设置要使用的线程数iss.setSalientRadius(5);  // 设置用于计算协方差矩阵的球邻域半径iss.setNonMaxRadius(5);   // 设置非极大值抑制应用算法的半径iss.setThreshold21(0.95);     // 设定第二个和第一个特征值之比的上限iss.setThreshold32(0.95);     // 设定第三个和第二个特征值之比的上限iss.setMinNeighbors(6);       // 在应用非极大值抑制算法时,设置必须找到的最小邻居数iss.compute(*keypoint);
}
// 法线计算和 计算特征点的Spinimage描述子
void computeKeyPointsFPFH(PointCloud::Ptr& cloud_in, PointCloud::Ptr& key_cloud, PointCloudfpfh::Ptr& dsc, Tree::Ptr& tree)
{pcl::NormalEstimationOMP<PointT, pcl::Normal> n;//OMP加速pcl::PointCloud<pcl::Normal>::Ptr normals(new pcl::PointCloud<pcl::Normal>);n.setNumberOfThreads(6);//设置openMP的线程数n.setInputCloud(key_cloud);n.setSearchSurface(cloud_in);n.setSearchMethod(tree);//n.setKSearch(10);n.setRadiusSearch(0.3);n.compute(*normals);pcl::FPFHEstimationOMP<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> f;f.setNumberOfThreads(12);f.setInputCloud(key_cloud);f.setInputNormals(normals);f.setSearchMethod(tree);f.setKSearch(30);f.compute(*dsc);}// 点云可视化
void visualize_pcd(PointCloud::Ptr icp_result, PointCloud::Ptr cloud_target)
{//创建初始化目标pcl::visualization::PCLVisualizer viewer("registration Viewer");pcl::visualization::PointCloudColorHandlerCustom<PointT> final_h(icp_result, 0, 255, 0);pcl::visualization::PointCloudColorHandlerCustom<PointT> tgt_h(cloud_target, 255, 0, 0);viewer.setBackgroundColor(0, 0, 0);viewer.addPointCloud(cloud_target, tgt_h, "tgt cloud");viewer.addPointCloud(icp_result, final_h, "final cloud");while (!viewer.wasStopped()){viewer.spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(100000));}
}int main()
{// 加载源点云和目标点云PointCloud::Ptr cloud(new PointCloud);PointCloud::Ptr cloud_target(new PointCloud);if (pcl::io::loadPCDFile<pcl::PointXYZ>("pcd/pig_view1.pcd", *cloud) == -1){PCL_ERROR("加载点云失败\n");}if (pcl::io::loadPCDFile<pcl::PointXYZ>("pcd/pig_view2.pcd", *cloud_target) == -1){PCL_ERROR("加载点云失败\n");}visualize_pcd(cloud, cloud_target);//关键点pcl::PointCloud<PointT>::Ptr keypoints1(new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<PointT>::Ptr keypoints2(new pcl::PointCloud<pcl::PointXYZ>);Tree::Ptr tree(new Tree);extract_keypoint(cloud, keypoints1, tree);extract_keypoint(cloud_target, keypoints2, tree);cout << "iss完成!" << endl;cout << "cloud的关键点的个数:" << keypoints1->size() << endl;cout << "cloud_target的关键点的个数:" << keypoints2->size() << endl;// 使用SpinImage描述符计算特征PointCloudfpfh::Ptr source_features(new PointCloudfpfh);PointCloudfpfh::Ptr target_features(new PointCloudfpfh);computeKeyPointsFPFH(cloud, keypoints1, source_features, tree);computeKeyPointsFPFH(cloud_target, keypoints2, target_features, tree);cout << "FPFH完成!" << endl;//SAC配准pcl::SampleConsensusInitialAlignment<PointT, PointT, FPFHT> scia;scia.setInputSource(keypoints1);scia.setInputTarget(keypoints2);scia.setSourceFeatures(source_features);scia.setTargetFeatures(target_features);scia.setMinSampleDistance(7);     // 设置样本之间的最小距离scia.setNumberOfSamples(100);       // 设置每次迭代计算中使用的样本数量(可省),可节省时间scia.setCorrespondenceRandomness(6);// 在选择随机特征对应时,设置要使用的邻居的数量;PointCloud::Ptr sac_result(new PointCloud);scia.align(*sac_result);Eigen::Matrix4f sac_trans;sac_trans = scia.getFinalTransformation();cout << "SAC配准完成!" << endl;//icp配准PointCloud::Ptr icp_result(new PointCloud);pcl::IterativeClosestPoint<PointT, PointT> icp;icp.setInputSource(keypoints1);icp.setInputTarget(keypoints2);icp.setMaxCorrespondenceDistance(20);icp.setMaximumIterations(35);        // 最大迭代次数icp.setTransformationEpsilon(1e-10); // 两次变化矩阵之间的差值icp.setEuclideanFitnessEpsilon(0.01);// 均方误差icp.align(*icp_result, sac_trans);cout << "ICP配准完成!" << endl;// 输出配准结果std::cout << "ICP converged: " << icp.hasConverged() << std::endl;std::cout << "Transformation matrix:\n" << icp.getFinalTransformation() << std::endl;Eigen::Matrix4f icp_trans;icp_trans = icp.getFinalTransformation();cout << icp_trans << endl;使用创建的变换对未过滤的输入点云进行变换pcl::transformPointCloud(*cloud, *icp_result, icp_trans);visualize_pcd(icp_result, cloud_target);return 0;
}

关键代码解析:

我之前在iss关键点检测以及SAC-IA粗配准-CSDN博客

和Spin Image自旋图像描述符可视化以及ICP配准-CSDN博客以及本章第一部分已经解释了大部分函数,这里就不赘述了

结果:

这篇关于FPFH特征描述符、对应关系可视化以及ICP配准的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/723689

相关文章

POJ1269 判断2条直线的位置关系

题目大意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。 解题思路: 先判断两条直线p1p2, q1q2是否共线, 如果不是,再判断 直线 是否平行, 如果还不是, 则两直线相交。  判断共线:  p1p2q1 共线 且 p1p2q2 共线 ,共线用叉乘为 0  来判断,  判断 平行:  p1p

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

基于SSM+Vue+MySQL的可视化高校公寓管理系统

系统展示 管理员界面 宿管界面 学生界面 系统背景   当前社会各行业领域竞争压力非常大,随着当前时代的信息化,科学化发展,让社会各行业领域都争相使用新的信息技术,对行业内的各种相关数据进行科学化,规范化管理。这样的大环境让那些止步不前,不接受信息改革带来的信息技术的企业随时面临被淘汰,被取代的风险。所以当今,各个行业领域,不管是传统的教育行业

《计算机视觉工程师养成计划》 ·数字图像处理·数字图像处理特征·概述~

1 定义         从哲学角度看:特征是从事物当中抽象出来用于区别其他类别事物的属性集合,图像特征则是从图像中抽取出来用于区别其他类别图像的属性集合。         从获取方式看:图像特征是通过对图像进行测量或借助算法计算得到的一组表达特性集合的向量。 2 认识         有些特征是视觉直观感受到的自然特征,例如亮度、边缘轮廓、纹理、色彩等。         有些特征需要通

读软件设计的要素04概念的关系

1. 概念的关系 1.1. 概念是独立的,彼此间无须相互依赖 1.1.1. 一个概念是应该独立地被理解、设计和实现的 1.1.2. 独立性是概念的简单性和可重用性的关键 1.2. 软件存在依赖性 1.2.1. 不是说一个概念需要依赖另一个概念才能正确运行 1.2.2. 只有当一个概念存在时,包含另一个概念才有意义 1.3. 概念依赖关系图简要概括了软件的概念和概念存在的理

数据依赖基础入门:函数依赖与数据库设计的关系

在数据库设计中,数据依赖 是一个重要的概念,它直接影响到数据库的结构和性能。函数依赖 作为数据依赖的一种,是规范化理论的基础,对数据库设计起着至关重要的作用。如果你是一名数据库设计的初学者,这篇文章将帮助你理解函数依赖及其在数据库设计中的应用。 什么是数据依赖? 数据依赖 是指同一关系中属性间的相互依赖和制约关系,它是数据库设计中语义的体现。在现实世界中,数据之间往往存在某种依赖关系,而这

c++ 和C语言的兼容性关系

C++ 和 C 语言有很高的兼容性,但也存在一些差异和限制。下面是它们的兼容性关系的详细介绍: 兼容性 C++ 是 C 的超集: C++ 语言设计为兼容 C 语言的语法和功能,大部分 C 代码可以在 C++ 编译器中编译运行。 标准库兼容性: C++ 标准库包含了 C 标准库的内容,如 stdio.h、stdlib.h、string.h 等头文件,但 C++ 的标准库也提供了额外的功能,如