林浩然的流形漫游与微分几何奇遇记

2024-02-17 22:50

本文主要是介绍林浩然的流形漫游与微分几何奇遇记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

林浩然的流形漫游与微分几何奇遇记

Lin Haoran’s Manifold Odyssey and Adventures in Differential Geometry

在数学王国的另一片疆域,我们的主人公林浩然是一位热衷于探索未知世界的冒险家。这一次,他将带领我们穿越到神秘的“流形世界”,并在这个奇妙的舞台上,演绎一场融合了拓扑、微积分和几何的幽默大戏。

In another realm of the mathematical kingdom, our protagonist Lin Haoran is an avid explorer keen on discovering the unknown. This time, he will lead us through the mysterious “Manifold World,” weaving a humorous tale that combines topology, calculus, and geometry on this enchanting stage.

话说林浩然从点集拓扑学的探险归来后,发现极限的概念虽然已在各个角落扎根,但数学家们并未满足于此,他们想要在这无限宇宙中舞动起微分的魔法棒。于是乎,林浩然拿起了“现代微分几何”的魔杖,踏上了全新的征程。

Returning from his adventures in point-set topology, Lin Haoran discovers that while the concept of limits has taken root in various corners, mathematicians are not satisfied. They aspire to wield the wand of differentiation in this infinite universe. Thus, Lin Haoran picks up the magical wand of “modern differential geometry” and embarks on a brand-new journey.

初识流形,林浩然惊叹不已,原来这不仅仅是一个拓扑空间,更是在其上加装了一套精密的微分结构——就像给一块抽象的布料缝制了经纬线,使得原本看似平淡无奇的空间变得可以进行细致入微的测量与计算。曲率?那可是流形上的俏皮精灵,它们在二维或三维的传统领地翩翩起舞,而在更广阔的世界里,则换上了更加华丽的外衣。

Upon encountering manifolds, Lin Haoran is awe-struck. These are not merely topological spaces but are equipped with a precise differential structure—like sewing latitude and longitude lines onto an abstract fabric. This allows detailed measurements and calculations in what initially appears to be an ordinary space. Curvature? Those are mischievous elves dancing in the traditional two or three dimensions, adorned in even more splendid attire in the broader world.

面对流形上的微分定义,林浩然笑称自己仿佛拥有三头六臂,因为他见识到了三种不同角度给出的等价解释。有时,这些多样的视角让问题显得像是一团乱麻,但更多时候,它们却如同解锁密室的三把钥匙,为解决问题提供了意想不到的灵感通道。

Facing the differential definition on manifolds, Lin Haoran jokingly remarks that he feels like he has three heads and six arms, for he has witnessed three different equivalently explanatory perspectives. Sometimes, this diversity makes the problem seem like a tangled mess, but more often, it acts like three keys unlocking a secret room, providing unexpected inspiration for problem-solving.

在流形这个大家庭里,林浩然结交了许多奇特的朋友,如切向空间(Tangent space)这位瞬息万变的魔术师,余切空间(Cotangent space)那位内敛而深邃的诗人,还有推前映射(Push forward)和拉回映射(Pull back)这对默契十足的相声搭档,以及纤维丛(Fibre bundle)这个构造精巧的微观宇宙模型。当然,还有流动(Flow)、浸入(Immersion)和子射影(Submersion)这些各具神通的角色。

In this manifold family, Lin Haoran befriends many unique characters—like the ever-changing magician Tangent Space, the reserved and profound poet Cotangent Space, the witty duo of Push Forward and Pull Back mappings, and the intricately constructed microcosm Fiber Bundle. Of course, there are characters like Flow, Immersion, and Submersion with their own magical abilities.

正当机器学习界的时尚潮流涌向流形领域时,林浩然不禁暗自窃笑:“嘿,小家伙们,你们可别以为随便穿上流形的外衣就能领悟其中奥秘!不过嘛,想耍耍几个基本的流形算法,倒也无需过于深厚的微分几何底蕴。”

Just as the trendy wave of machine learning surges into the manifold domain, Lin Haoran can’t help but chuckle to himself: “Hey, youngsters, don’t think that simply donning the attire of manifolds will grant you the comprehension of its mysteries! However, if you want to play with a few basic manifold algorithms, you don’t need an overly profound background in differential geometry.”

然而,在林浩然心中,微分几何真正的宝藏藏在了李群与李代数的联姻之中。这两大家族,一个是分析领域的翩翩公子,一个是代数世界的冷艳公主,他们的结合犹如数学版的罗密欧与朱丽叶,不仅诞生了无数美妙的定理,更是推动着整个数学宇宙的演化。至于泛函分析与调和分析这对同父异母的兄弟,也在各自的领域内携手共进,谱写着和谐而深沉的旋律。

Yet, in Lin Haoran’s heart, the true treasure of differential geometry lies in the union of Lie groups and Lie algebras. These two major families, one a charming prince of analysis, the other a cold and elegant princess of algebra, their union is like the mathematical version of Romeo and Juliet. It not only gives birth to countless beautiful theorems but also propels the evolution of the entire mathematical universe. As for the brothers of Functional Analysis and Harmonic Analysis, born of the same father but different mothers, they also join forces in their respective fields, composing a harmonious and profound melody.

如此这般,林浩然在流形的海洋里畅游,以风趣幽默的态度揭示了微分几何的丰富内涵和广泛应用。他的故事告诉我们,无论是古典还是现代,数学始终以其独特的魅力,吸引着每一个敢于探索未知、挑战智慧边界的人。

In this manner, Lin Haoran navigates the ocean of manifolds, revealing the rich connotations and extensive applications of differential geometry with a witty and humorous attitude. His story tells us that whether classical or modern, mathematics always captivates with its unique charm, attracting anyone daring to explore the unknown and challenge the boundaries of wisdom.

在这里插入图片描述

陈省身与他的“维度魔法”:一场几何界的“哈利·波特”式革命

Shiing-Shen Chern and His “Dimensional Magic”: A “Harry Potter”-esque Revolution in the World of Geometry


在那个数学巫师们还在二维曲面的霍格沃茨学院里用高斯-博内咒语编织奇妙几何图案的时代,有一位名叫陈省身的大魔法师,他手持智慧的魔杖,施展了一道跨越维度壁垒的神奇法术。

In the era when mathematical wizards were still weaving magical geometric patterns in the Hogwarts Academy of two-dimensional surfaces using Gauss-Bonnet spells, there emerged a great sorcerer named Shiing-Shen Chern. Armed with the wand of wisdom, he cast a spell that transcended dimensional barriers.

1945年,这场几何界的“霍格沃茨年度大秀”拉开帷幕,陈省身教授挥舞着理论的羽毛笔,在神秘的数学羊皮纸上书写了他的杰作——《闭黎曼流形的示性类》。这可不是一般的学术论文,而是一本实实在在的“高级魔法手册”。在这本手册中,陈大师将原本仅限于二维空间施展的高斯-博内定理成功地升级为多维版的“超级变形术”,让那些原本只在平面世界里跳跃的几何精灵们得以在任意维度的空间中自由翱翔。

In 1945, the “Hogwarts Annual Showcase” in the realm of geometry unfolded, and Professor Chern waved his theoretical quill, inscribing his masterpiece on the mystical parchment — “Characteristic Classes of Hermitian Manifolds.” This was no ordinary academic paper; it was a tangible “advanced magic manual.” In this manual, Master Chern successfully upgraded the Gauss-Bonnet theorem, originally confined to two-dimensional space, into a multi-dimensional “super-transformation spell.” This allowed the geometric elves, who originally leaped only in the flat world, to freely soar in spaces of any dimension.

而最令人拍案叫绝的是,陈省身还从无到有地创造出了两个全新的魔法概念:“陈类”和“陈数”。你可以想象这些概念就像魔法世界的金色飞贼和隐形斗篷一样珍贵,它们揭示了隐藏在复杂高维流形背后的秘密结构,使得全世界的几何学者们都像抓住金色飞贼的小巫师一般兴奋不已。

What truly astonished the audience was that Chern, from scratch, created two entirely new magical concepts: “Chern class” and “Chern number.” You can imagine these concepts as precious as the golden snitch and the invisibility cloak in the wizarding world. They revealed the hidden structures behind complex high-dimensional manifolds, causing geometric scholars worldwide to be as excited as young wizards catching the golden snitch.

当国际数学界的巨擘安德烈·韦伊教授读到这篇论文时,其反响之热烈堪比邓布利多校长对哈利·波特的赞赏。韦伊教授不仅给出了极高的评价,更是化身魔法世界的邮差猫头鹰,通过热情洋溢的评述信件,将陈省身的研究成果迅速传遍全球每一个角落的数学研究所,仿佛是分发魔法糖果给年轻的数学家们,让他们一夜之间都成了掌握新魔法的小小天才。

When the giant in the international mathematical community, Professor André Weil, read this paper, the enthusiasm he showed was comparable to Dumbledore’s admiration for Harry Potter. Professor Weil not only gave high praise but also transformed into the magical world’s owl post, spreading Chern’s research achievements rapidly to every corner of the globe’s mathematical research institutes. It was like distributing magical candies to young mathematicians overnight, turning them into little geniuses mastering the new magic.

就这样,陈省身凭借这一开创性的研究,开启了全局微分几何领域的新纪元,就像哈利·波特引领了新一代年轻巫师们的崛起一样,引发了数学界的一场深远变革。从此,无数的几何学子们开始潜心修炼“陈类”和“陈数”的运用技巧,他们带着好奇心和探索精神,继续在无尽的维度宇宙中绘制属于自己的几何画卷。

In this way, Shiing-Shen Chern, with this groundbreaking research, ushered in a new era in the field of global differential geometry. Similar to how Harry Potter led the rise of a new generation of young wizards, Chern sparked a profound transformation in the mathematical world. Since then, countless geometry enthusiasts have dedicated themselves to practicing the techniques of “Chern class” and “Chern number.” With curiosity and an exploratory spirit, they continue to paint their own geometric canvases in the endless universe of dimensions.

这篇关于林浩然的流形漫游与微分几何奇遇记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/719227

相关文章

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

poj 3304 几何

题目大意:给出n条线段两个端点的坐标,问所有线段投影到一条直线上,如果这些所有投影至少相交于一点就输出Yes!,否则输出No!。 解题思路:如果存在这样的直线,过投影相交点(或投影相交区域中的点)作直线的垂线,该垂线(也是直线)必定与每条线段相交,问题转化为问是否存在一条直线和所有线段相交。 若存在一条直线与所有线段相交,此时该直线必定经过这些线段的某两个端点,所以枚举任意两个端点即可。

POJ 2318 几何 POJ 2398

给出0 , 1 , 2 ... n 个盒子, 和m个点, 统计每个盒子里面的点的个数。 const double eps = 1e-10 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;}struct Point{double x , y

poj 2653 几何

按顺序给一系列的线段,问最终哪些线段处在顶端(俯视图是完整的)。 const double eps = 1e-10 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;}struct Point{double x , y ;Point(){}Po

三维布尔运算对不规范几何数据的兼容处理

1.前言 上一篇文章谈过八叉树布尔运算,对于规范几何数据的情况是没有问题的。 在实际情况中,由于几何数据来源不一,处理和生成方式不一,我们无法保证进行布尔运算的几何数据都是规范的,对于不规范情况有时候也有需求,这就需要兼容不规范数据情况,当然这种兼容不是一味的让步,而是对于存在有限的不规范数据的兼容处理。 2.原始数据示例 下图是一个大坝模型和之上要对其进行布尔运算的立方体。 大坝模型由

CF#284 (Div. 2) C.(几何规律)

题目链接:http://codeforces.com/contest/499/problem/C 解题思路: 把两个点的坐标分别带入方程组,如果最后两个值相乘为负,即异号,计数器++。其中有一个有趣的现象,从A到B的最短步数,可以变化为求A和B之间夹了多少条直线,那么最后只要求出直线数,即可求出最小步数。 如果一条直线夹在A和B中间,那么把A和B的坐标带入后,所得值相乘一定为负。数据很

百度之星初赛1006(计算几何:能包含凸包的最小矩形面积)

矩形面积    Accepts: 717    Submissions: 1619  Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description 小度熊有一个桌面,小度熊剪了很多矩形放在桌面上,小度熊想知道能把这些