无人驾驶控制算法LQR和MPC的仿真实现

2024-02-17 10:52

本文主要是介绍无人驾驶控制算法LQR和MPC的仿真实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. LQR控制器

1.1 问题陈述

考虑一个质量为 m m m 的滑块在光滑的一维地面上运动。初始时,滑块的位置和速度均为 0 0 0。我们的目标是设计一个控制器,基于传感器测得的滑块位置 x x x,为滑块提供外力 u u u,使其能够跟随参考点 x r x_r xr 运动。

在这里插入图片描述

为建立动力学模型,我们采用以下微分方程:

x ¨ = u m \ddot x = \frac{u}{m} x¨=mu

定义状态向量 x = [ x 1 x 2 ] = [ x x ˙ ] x= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =\begin{bmatrix} x \\\dot x \end{bmatrix} x=[x1x2]=[xx˙],其中 x 1 x_1 x1 表示位移, x 2 x_2 x2 表示速度。系统的状态方程为:

x ˙ = A x + B u \dot x= Ax+Bu x˙=Ax+Bu

其中:

A = [ 0 1 0 0 ] , B = [ 0 1 m ] A=\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad B=\begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} A=[0010],B=[0m1]

系统的开环矩阵 A A A 决定了系统是否稳定。若没有控制器,物块在光滑地面上将无法自行停止。

1.2 控制器设计

引入控制器,我们考虑以下形式:

u = − k x = − [ k 1 , k 2 , ⋯ ] [ x 1 x 2 ⋮ ] u=-kx=-\begin{bmatrix} k_1,k_2,\cdots \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ \vdots \end{bmatrix} u=kx=[k1,k2,] x1x2

从而得到新的闭环矩阵:

x ˙ = ( A − B k ) x = A c l x \dot x = (A-Bk)x = A_{cl}x x˙=(ABk)x=Aclx

通过选择 k k k,我们可以改变 A c l A_{cl} Acl 的特征值,从而控制系统的行为。因此,关键问题是如何选择最优的 k k k

1.3 LQR控制器

引入线性二次调节器(LQR)的思想,我们定义代价函数:

J = ∫ 0 ∞ ( x T Q x + u T R u ) d t J= \int_0^\infty{(x^TQx+u^TRu)}dt J=0(xTQx+uTRu)dt

其中 Q Q Q R R R 是权重矩阵。通过调整权重,LQR 在保持系统稳定性的同时,寻找使代价函数最小化的控制策略。

在这里插入图片描述

1.4 仿真建模

进行简单的仿真建模,通过设定初始值和目标值,LQR 控制系统能够有效地使小物块按照预设轨迹运动。

在这里插入图片描述
我们将初始值设在5,目标值设在1,最后得到
在这里插入图片描述

2. MPC控制器

2.1 模型的离散化

考虑同样的控制对象 x ˙ = A x + B u \dot x= Ax+Bu x˙=Ax+Bu,使用前向欧拉法将状态方程离散化:

x ( k + 1 ) = A ˉ x ( k ) + B ˉ u ( k ) x(k+1) =\bar Ax(k) + \bar B u(k) x(k+1)=Aˉx(k)+Bˉu(k)

其中

A ˉ = [ 1 T 0 1 ] , B ˉ = [ 0 T m ] \bar A=\begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix},\quad \bar B=\begin{bmatrix} 0 \\ \frac{T}{m} \end{bmatrix} Aˉ=[10T1],Bˉ=[0mT]

这里的 T T T 是控制周期。

2.2 预测

MPC 的特点之一是需要对未来系统状态进行预测。在 k k k 时刻,我们预测未来 p p p 个控制周期内的系统状态,并定义预测时域内的控制量:

X k = [ x ( k + 1 ∣ k ) T x ( k + 2 ∣ k ) T ⋯ x ( k + p ∣ k ) T ] T X_k= \begin{bmatrix} x(k+1|k)^T & x(k+2|k)^T &\cdots& x(k+p|k)^T \end{bmatrix}^T Xk=[x(k+1∣k)Tx(k+2∣k)Tx(k+pk)T]T

2.3 优化

我们希望找到最佳的控制量 U k U_k Uk,使预测时域内的状态向量与参考值越接近越好。这导致一个开环最优控制问题,其数学描述为:

min ⁡ J ( U k ) = U k T ( Θ T Q Θ + W ) U k + 2 ( E T Q Θ ) U k + E T Q E \min J(U_k) = U_k^T (\Theta^T Q \Theta + W) U_k +2(E^TQ\Theta) U_k +E^TQE minJ(Uk)=UkT(ΘTQΘ+W)Uk+2(ETQΘ)Uk+ETQE

其中, Θ \Theta Θ E E E 分别为预测模型和误差。

在这里插入图片描述

2.4 仿真

对动力学方程进行拉普拉斯变换,得到传递函数 G ( s ) = 1 m s 2 G(s)=\frac{1}{ms^2} G(s)=ms21。通过仿真,可以验证 MPC 控制系统在固定值和正弦波输入情况下能够有效跟踪目标。

s 2 X ( s ) = 1 m F ( s ) s^2X(s)=\frac{1}{m}F(s) s2X(s)=m1F(s)
得到传递函数为:
G ( s ) = X ( s ) F ( s ) = 1 m s 2 G(s)=\frac{X(s)}{F(s)}=\frac{1}{ms^2} G(s)=F(s)X(s)=ms21
建立仿真:

在这里插入图片描述

我们得到在固定值和sinwave的情况下基本都可以跟踪的比较好(参数还可继续优化)

在这里插入图片描述

在这里插入图片描述

其中MPC代码为:

function u = Controller(pos_ref, pos, vel)
%参数设置
m    = 1.05;                %滑块质量,增加了5%作为建模误差
T    = 0.01;                %控制周期10ms
p    = 40;                  %控制时域(预测时域)
Q    = 10*eye(2*p);         %累计误差权重
W    = 0.0001*eye(p);       %控制输出权重
umax = 100;                 %控制量限制,即最大的力
Rk   = zeros(2*p,1);        %参考值序列
Rk(1:2:end) = pos_ref;    
Rk(2:2:end) = vel;          %参考速度跟随实际速度
%构建中间变量
xk    = [pos;vel];          %xk
A_    = [1 T;0 1];          %离散化预测模型参数A
B_    = [0;T/m];            %离散化预测模型参数B
psi   = zeros(2*p,2);       %psi
for i=1:1:ppsi(i*2-1:i*2,1:2)=A_^i;
end
theta = zeros(2*p,p);       %theta
for i=1:1:pfor j=1:1:itheta(i*2-1:i*2,j)=A_^(i-j)*B_;end
end
E = psi*xk-Rk;              %E
H = 2*(theta'*Q*theta+W);   %H
f = (2*E'*Q*theta)';        %f
%优化求解
coder.extrinsic('quadprog');
Uk=quadprog(H,f,[],[],[],[],-umax,umax);
%返回控制量序列第一个值
u = 0.0;                    %显示指定u的类型
u = Uk(1);

以上是一个简单的物理系统的 LQR 和 MPC 控制系统的设计和仿真。

这篇关于无人驾驶控制算法LQR和MPC的仿真实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/717554

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import