数据检索:倒排索引加速、top-k和k最邻近

2024-02-16 16:44

本文主要是介绍数据检索:倒排索引加速、top-k和k最邻近,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前在https://www.yuque.com/treblez/qksu6c/wbaggl2t24wxwqb8?singleDoc# 《Elasticsearch: 非结构化的数据搜索》我们看了ES的设计,主要侧重于它分布式的设计以及LSM-Tree,今天我们来关注算法部分:如何进行检索算法的设计以及如何加速倒排索引。然后看看topk的面试热门题如何解决。

状态检索:bitmap的哈希函数公式

bitmap的最优hash函数的计算公式为:
k = (m/n)*ln2
其中m为bit数组的长度,n为要存入的对象个数。

加速倒排索引和Roaring Map

倒排索引由key和posting list构成,posting list可以用很多结构实现,比如红黑树、跳表、链表等。
posting list往往会用于归并过程(join),这里我们很容易想到spark的join策略:嵌套循环、排序归并和哈希归并。他们的复杂度分别是m*n,m+n和n(较大)。
因为posting list天生有序,所以这里主要的策略在于加速排序归并和哈希归并过程。
排序归并可以用跳表和红黑树,双指针相互二分查找将每次搜索的复杂度降低到logk。
Lucene和Elasticsearch就采用了这种方法。
同样,posting list也可以使用哈希表和位图来实现。
普通的哈希表和位图很简单,不再赘述。更广泛使用的是Roaring Bitmap(压缩位图)。
Roaring Bitmap简单来说,就是用高16位哈希到桶的编号,低16位再哈希到bitmap,这样如果元素稀疏的话,就能节省没有bitmap的桶的空间。
低16位桶的数量如果少于4096,那么bitmap就使用数组容器来节省空间,否则使用位图容器。

倒排索引的更新

倒排索引的更新主要有如下方案:

  1. Double Buffer双缓冲 + 原子swap
  2. 全量索引+增量索引

增量索引的合并方案:

  1. 全量合并
  2. 再合并(归并合并)
  3. 滚动合并(加入索引级别)

精准打分和非精准打分

精准打分就是采用堆排序算法进行排序。
复杂度是n+klogn。
非精准打分一般用在召回阶段,也就是排序的第一步,一般采用的打分算法有tf-idf和bm25两种。
那么非精准的打分如何实现呢?

  1. 静态质量得分截断(比如使用pagerank)
  2. 词频得分打分截断(使用胜者表解决相同文档得分不同的情况,选出多于k个结果)
  3. 使用分层索引,建立精准索引和非精准索引,不足k个精准结果去非精准索引中补齐

日志的分布式拆分

索引的拆分方式:

  1. 基于文档进行拆分
  2. 基于前缀进行拆分

※最近的k个人和k最邻近

KNN - 检索最近的k个设施(低维空间的k最近邻)- 四/八叉树、前缀树和k-d树

这两个问题都可以用Geohash编码,但是k最邻近设施比k个人更加复杂。
最近的k个人只需要查找编码的附近8个区域,就可以转换到非精确打分 – > 精确打分的流程中,但是k最邻近则需要不断扩大搜索范围,每次扩大一个搜索层级进行搜索。
为了利用到之前搜索的结果,k最邻近可以使用四叉树(二维),前缀树、八叉树(三维)和k-d树。
检索最近的k个加油站、检索相似文章都是这类问题,相似文章在存储中表示为n维向量中的一个点,也会变成k最邻近设施的问题。

ANN - 过滤相似文档(高维空间的k最近邻)- 局部敏感哈希

当向量的维度太高的时候,k-d树的复杂度会变得很高。这时候,我们会采用局部敏感哈希的方案来处理:
对于高维空间,局部敏感哈希会随机生成n个超平面,每个平面都会将高维空间划分成两个部分,分别编码为0和1,如果有两个点的哈希值的海明距离比较小,那么我们就认为它们邻近。
局部敏感哈希的问题在于它无法保存每个维度的权重信息,Google提出了SimHash来解决这个问题。

ANN - 有权重的高维空间k最近邻-SimHash

simHash会将哈希函数编码中的0和1转换为-1和1,并且乘上权重值,最后将所有关键词的哈希值相加。最后将大于0的值变为1,小于等于0的值变为0.
那么如何在这个基础上进行相似检索呢?
简单的方法是将每一个比特位都当作索引,在召回时分别考虑自己的每一个比特位,进行召回,但是这样产生的数据量很大,google提出的解决方案是抽屉原理:将哈希值平均切为4段,如果两个哈希值的比特位差异不超过3个(海明距离小于等于3),那么至少有一个段的比特位完全相同。
因此,我们可以将每一个文档都根据比特位分为4段,建立4个倒排索引,然后进行召回。

ANN - HNSW

Delaunay图可以保证图中所有的点都有点与之相连,且能保证整张图的边的数量尽可能的少。但实际上,NSW并不是直接采用Delaunay图。Delaunay图有个缺点,它没有高速公路机制,也就是说所有的图节点都只会跟自己相近的点建立连接,如果需要抵达一个距离较远的点,则时间复杂度较高。而不管是构建图索引的时候,还是在线检索的时候,都需要进行临近搜索,直接采用Delaunay图就会导致离线索引构建以及在线serving的时间复杂度不理想。
NSW的图结构是近似的Delaunay图,与Delaunay图不同的是,他有高速公路机制。如图所示。
image.png

拍照识花–乘积量化

上面的ANN和KNN算法的问题在于,它们只能用在表面特征的相似性上,而不是本质的相似性上。
在需要本质相似性的领域,比如图像处理上,需要KMeans来进行聚类。
K-means可以将k个聚类id作为倒排索引的key来建立倒排索引。
当要查询一个点邻近的点时,计算该点和所有聚类中心的距离,就可以进行topK的查询。
为了优化存储空间,可以用乘积量化技术进行压缩。

LevelDB的lsm-tree

LevelDB将内存数据分为memtable和immutable table两部分。这两部分数据都使用跳表存储。
当memtable的数据达到存储上限时,将会被转换为immutable table,并且生成一个新的memtable,新的memtable被用来支持新数据的写入和读取。immutable只读,不需要加锁就能写入磁盘。
LevelDB使用LCS(https://www.yuque.com/treblez/qksu6c/wbaggl2t24wxwqb8#seDXd)进行合并,从第一层开始使用归并排序后的结果。
SSTable分为数据存储区(data block)和数据索引区(index block)。
数据索引区从上到下又分为:

  • 过滤器数据区
  • 过滤器索引区
  • 数据索引区 对数据存储区的block进行索引 格式 key - offset - size
  • foot block 记录index block和meta index block的大小

SSTable的检索过程和列式存储很像,这里的过滤器都是bloom filter。
使用缓存加速检索SSTable文件的过程
如果在二分查找时,将data block和index block分两次io读入内存,那么开销显然非常大,为了减少这里的开销,LevelDB设计了table cache和block cache两个索引。
table cache存储最近使用的SSTable的index block,block cache存储最近使用的data block。这两个缓存都使用LRU策略替换。
levelDB的一个问题在于如果immutable table还没有写入磁盘,memtable满了,会导致阻塞,google的rocksDB允许创建多个memtable解决了这个问题。
B+树适用于随机读很多,但是写入很少的场景;lsm树进行了大量写操作优化,效率会更高。
在LSM-Tree的L0写入时,限制文件数量,L1及以上则要限制容量大小;写入时会根据beg和end限制本层的一个sstable文件在下一层对应的sstable文件数小于十个,如果达到了十个就会结束文件的生成。

top-k + lsm-tree

TOP-K一直是面试的热门题目,题目的意图一般是考察小/大顶堆或者快速选择算法。
我们来考虑更复杂的情况:

  1. 有插入和删除的top-k中,什么样的数据结构/算法是最合适的?
  2. 面对海量数据的存储,在不使用swap mem的情况下,怎样实现top-k?
  3. 用ES怎么实现top-k?复杂度如何?
  4. 流式数据的top-k又如何实现?

https://blog.quarkslab.com/mongodb-vs-elasticsearch-the-quest-of-the-holy-performances.html

这篇关于数据检索:倒排索引加速、top-k和k最邻近的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/715118

相关文章

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

Python中列表的高级索引技巧分享

《Python中列表的高级索引技巧分享》列表是Python中最常用的数据结构之一,它允许你存储多个元素,并且可以通过索引来访问这些元素,本文将带你深入了解Python列表的高级索引技巧,希望对... 目录1.基本索引2.切片3.负数索引切片4.步长5.多维列表6.列表解析7.切片赋值8.删除元素9.反转列表

MySQL的索引失效的原因实例及解决方案

《MySQL的索引失效的原因实例及解决方案》这篇文章主要讨论了MySQL索引失效的常见原因及其解决方案,它涵盖了数据类型不匹配、隐式转换、函数或表达式、范围查询、LIKE查询、OR条件、全表扫描、索引... 目录1. 数据类型不匹配2. 隐式转换3. 函数或表达式4. 范围查询之后的列5. like 查询6

PostgreSQL如何查询表结构和索引信息

《PostgreSQL如何查询表结构和索引信息》文章介绍了在PostgreSQL中查询表结构和索引信息的几种方法,包括使用`d`元命令、系统数据字典查询以及使用可视化工具DBeaver... 目录前言使用\d元命令查看表字段信息和索引信息通过系统数据字典查询表结构通过系统数据字典查询索引信息查询所有的表名可

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

贝壳面试:什么是回表?什么是索引下推?

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50+)中,最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格,遇到很多很重要的面试题: 1.谈谈你对MySQL 索引下推 的认识? 2.在MySQL中,索引下推 是如何实现的?请简述其工作原理。 3、说说什么是 回表,什么是 索引下推 ? 最近有小伙伴在面试 贝壳、soul,又遇到了相关的

Mysql高级篇(中)——索引介绍

Mysql高级篇(中)——索引介绍 一、索引本质二、索引优缺点三、索引分类(1)按数据结构分类(2)按功能分类(3) 按存储引擎分类(4) 按存储方式分类(5) 按使用方式分类 四、 索引基本语法(1)创建索引(2)查看索引(3)删除索引(4)ALTER 关键字创建/删除索引 五、适合创建索引的情况思考题 六、不适合创建索引的情况 一、索引本质 索引本质 是 一种数据结构,它用

PyInstaller问题解决 onnxruntime-gpu 使用GPU和CUDA加速模型推理

前言 在模型推理时,需要使用GPU加速,相关的CUDA和CUDNN安装好后,通过onnxruntime-gpu实现。 直接运行python程序是正常使用GPU的,如果使用PyInstaller将.py文件打包为.exe,发现只能使用CPU推理了。 本文分析这个问题和提供解决方案,供大家参考。 问题分析——找不到ONNX Runtime GPU 动态库 首先直接运行python程序

ElasticSearch 6.1.1 通过Head插件,新建索引,添加文档,及其查询数据

ElasticSearch 6.1.1 通过Head插件,新建索引,添加文档,及其查询; 一、首先启动相关服务: 二、新建一个film索引: 三、建立映射: 1、通过Head插件: POST http://192.168.1.111:9200/film/_mapping/dongzuo/ {"properties": {"title": {"type":

ElasticSearch 6.1.1运用代码添加索引及其添加,修改,删除文档

1、新建一个MAVEN项目:ElasticSearchTest 2、修改pom.xml文件内容: <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.or