AI - 碰撞避免算法分析(ORCA)

2024-02-16 13:04
文章标签 算法 分析 ai 避免 碰撞 orca

本文主要是介绍AI - 碰撞避免算法分析(ORCA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对比VO/RVO

ORCA算法检测碰撞的原理和VO/RVO基本一样的,只是碰撞区域的计算去掉了一定时间以外才可能发生的碰撞,因此碰撞区域的扇形去掉了前面的部分,由圆锥头变成了个圆
在这里插入图片描述
另一个最主要的区别是,求新的速度,是根据相对多个不同物体生成的半平面计算获得。
半平面:
在这里插入图片描述
上图里,u即之前VO和RVO求出的相对速度避免碰撞需要偏移的最短速度向量VO/RVO分析。VO/RVO里由于只考虑避障双方的两个物体,所以期望速度Vaopt加上了u之后,便获得了结果。在ORCA里,会考虑多个碰撞物体,因此会过Vaopt加上u/2之后的点,做u向量的垂直线,而获得一条直线。这条直线一侧所有的点(即ORCA半平面)表示的速度,都会让a不与b相撞。
对于多个碰撞物体,可以求出多个半平面,通过这些半平面的交集,来确定物体的新速度

论文理论的分析

具体的分析网上有挺多的,理论本身还是比较好理解的,这里直接转载别人的了ORCA(RVO2)算法优化整理版

源码分析

ORCA源码地址

RVOSimulator

RVOSimulator相当于整个碰撞避免逻辑的管理模拟器。
一些参数
timeStep_:管理器每次模拟的时间间隔,传入的基本就是游戏运行的每帧时间
kdTree_:一个数组结构的KD树,用来管理每个机器人的相邻目标
agents_:管理器控制的机器人
obstacles_:管理器控制的静态障碍物
主要函数:
addAgent:向管理器添加需要进行碰撞避免处理的机器人
doStep:模拟一次所有机器人碰撞避免处理:先构建kd树,计算每个机器人的相邻目标,在计算新的速度,然后更新位置

void RVOSimulator::doStep() {kdTree_->buildAgentTree();
#ifdef _OPENMP
#pragma omp parallel for
#endif /* _OPENMP */for (int i = 0; i < static_cast<int>(agents_.size()); ++i) {agents_[i]->computeNeighbors(kdTree_);agents_[i]->computeNewVelocity(timeStep_);}#ifdef _OPENMP
#pragma omp parallel for
#endif /* _OPENMP */for (int i = 0; i < static_cast<int>(agents_.size()); ++i) {agents_[i]->update(timeStep_);}globalTime_ += timeStep_;
}

KdTree

kd树的原理之前文章有分析过,这里先跳过了
KDTree

Agent

实际碰撞物的代理目标,可以每帧中把游戏实际物体的参数传入,通过RVOSimulator计算后,再取出对应代理目标的位置信息更新游戏实际物体
类似这样:

m_sim->setTimeStep(dt);
for(auto aiNode: _aiNodes) {int idx = aiNode->getId();Vec2 velocity = aiNode->getVelocity();m_sim->setAgentMaxSpeed(idx, 1/dt);m_sim->setAgentPrefVelocity(idx, Vector2(velocity.x * 1 / dt, velocity.y * 1 / dt));
}
m_sim->doStep();
for (auto aiNode : _aiNodes) {int idx = aiNode->getId();Vector2 velocity = m_sim->getAgentVelocity(idx);Vector2 v = m_sim->getAgentPosition(idx);aiNode->setVelocity(Vec2(velocity.x() * dt, velocity.y() * dt));aiNode->setPosition(Vec2(v.x(), v.y()));
}

Agent参数

agentNeighbors_:相邻的动态目标
obstacleNeighbors_:相邻的静态障碍物
orcaLines_:储存的半平面信息
newVelocity_:新的避障速度
*position_*位置
prefVelocity_:最佳目标速度
velocity_:当前速度
id_:唯一id
maxNeighbors_:最大避障邻居数(太遥远的过多邻居没有避障意义)
maxSpeed_:最大速度
neighborDist_:查找避障领据的判定位置(太遥远的目标没有避障意义)
radius_:物体半径
timeHorizon_:提前避障的时间,即只判定在一定时间范围内可能的碰撞
timeHorizonObst_:静态物体提前避障的时间

避障核心代码入口

void Agent::computeNewVelocity()

创建静态障碍物的ORCA半平面

其中障碍物的类:当前point_和下一个障碍物nextObstacle_的point_会构成一条直线,unitDir_是当前point_指向下一个point_的单位方向向量,isConvex_表示是否凹角

bool isConvex_;
Obstacle *nextObstacle_;
Vector2 point_;
Obstacle *prevObstacle_;
Vector2 unitDir_;

判断当前静态障碍直线在已处理半平面的右侧,且两个端点到半平面的距离大于物体的半径。因为新速度只能取半平面左侧,即下图中的情况,则新速度永远不会与当前处理的静态障碍直线相交。可以直接忽略
在这里插入图片描述

const Vector2 relativePosition1 = obstacle1->point_ - position_;
const Vector2 relativePosition2 = obstacle2->point_ - position_;
bool alreadyCovered = false;for (size_t j = 0; j < orcaLines_.size(); ++j) {if (det(invTimeHorizonObst * relativePosition1 - orcaLines_[j].point, orcaLines_[j].direction) - invTimeHorizonObst * radius_ >= -RVO_EPSILON && det(invTimeHorizonObst * relativePosition2 - orcaLines_[j].point, orcaLines_[j].direction) - invTimeHorizonObst * radius_ >=  -RVO_EPSILON) {alreadyCovered = true;break;}}

半平面的坐标计算都是以自身位置为坐标系计算。因此障碍物直线的坐标也要转换一下。即relativePosition1
代码里invTimeHorizonObst根据不同的判定时间,向量长度会有不同的缩放,但相对比例是不变的,分析的时候可以都当成1来处理,来忽略掉。
det(invTimeHorizonObst * relativePosition1 - orcaLines_[j].point, orcaLines_[j].direction)
这行代码是半平面的点到障碍物直线一个端点的向量,与半平面单位方向向量取叉积,因为叉积的模等于两矢量各自的模的积再乘以两矢量夹角的正弦,其中一个向量为单位矢量,则结果就是另一个向量到单位向量直线上的垂直距离。
>= -RVO_EPSILON 叉积大于0表示在向量逆时针方向,即新的障碍物直线端点在已处理的半平面右边

判定物体的坐标相对于障碍物直线在哪个方向
在这里插入图片描述
描述起来比较拗口,可以看上图,结合代码

const Vector2 obstacleVector = obstacle2->point_ - obstacle1->point_;
const float s = (-relativePosition1 * obstacleVector) / absSq(obstacleVector);
const float distSqLine = absSq(-relativePosition1 - s * obstacleVector);

(-relativePosition1 * obstacleVector) 求点积,两矢量模相乘,再乘夹角的余弦。
即 s = |-relativePosition1|*|obstacleVector| * cosθ / |obstacleVector|
s为物体坐标在障碍物直线上的投影点到障碍物直线起始点的长度,即上图中红色线段长度。s的大小可以表示此时物体在障碍物直线的左边,右边,还是两个端点之间
distSqLine 为物体坐标到障碍物直线的垂直记录,即上图中灰色线段长度

已经碰撞,对于物体相对于障碍物直线的不同碰撞点,做不同处理

if (s < 0.0f && distSq1 <= radiusSq) {

物体与障碍物直线起始点1,即左端点相撞,如果起始点1对应的是凸角的话,就将当前线放入要处理的半平面。至于凹角为什么不处理,我的理解是,如果是凹角的话,物体对于凹角的另一条线的s一定是在0-1之间,即在障碍物直线两个端点之一,处理的权重更大。
在这里插入图片描述

line.point = Vector2(0.0f, 0.0f);
line.direction = normalize(Vector2(-relativePosition1.y(), relativePosition1.x()));

因为静态障碍物是不会动的,因此半平面直接以物体自身为目标点,方向以垂直偏离碰撞点为目的,即上图中白色箭头。

if (s > 1.0f && distSq2 <= radiusSq)

物体与障碍物直线起始点2,即右端点相撞。和左端点类似,只是加了一个判断,就是下图中,obstacle2-unitDir在红线右侧的方向的话,就忽略这条障碍线的碰撞处理,以相邻边的障碍线处理为准

if (obstacle2->isConvex_ && det(relativePosition2, obstacle2->unitDir_) >= 0.0f)

在这里插入图片描述

if (s >= 0.0f && s < 1.0f && distSqLine <= radiusSq)

物体在障碍物两个端点间碰撞,比较简单,直接远离就行,下图红色区域即为新速度可选择区域
在这里插入图片描述
未碰撞,同样根据物体相对障碍物直线的不同位置,做不同处理

if (s < 0.0f && distSqLine <= radiusSq)

物体在障碍物左端点左边,如下图,并且不能是凹角,因为distSqLine <= radiusSq在这个情况下,如果是凹角的话,前一条障碍物直线一定会和物体已经碰撞,则先处理逃离碰撞直线的情况
在这里插入图片描述
接下来这段代码很关键,直接看很难理解,因为代码是直接写了拆解了多个步骤之后的数学公式

const float leg1 = std::sqrt(distSq1 - radiusSq);
leftLegDirection = Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;
rightLegDirection = Vector2(relativePosition1.x() * leg1 + relativePosition1.y() * radius_, -relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;

在这里插入图片描述

先说结论,leftLegDirection和rightLegDirection就是上图中绿色箭头所指的方向,两根线都是障碍物直线端点到圆的切线。
在这里插入图片描述
在这里插入图片描述
上图中红色箭头为向量,即障碍物直线左端点指向物体中心的
(-relativePosition1.x,-relativePosition1.y)
将该向量,逆时针旋转θ
在这里插入图片描述
在这里插入图片描述
将cosθ和sinθ代入,提取出分母 1/distSq1
最后将向量取反,解出来的结果就是
Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1
获得了leftLegDirection,即上图中绿色箭头。
leftLegDirection同理,只不过是顺时针旋转

if (s > 1.0f && distSqLine <= radiusSq)

物体在障碍物右端点右边,与左边同理,略过
物体在障碍物直线之间
如果端点的角是凸角的情况下,就是leftLegDirection,rightLegDirection如下图所示
在这里插入图片描述
如果端点是凹角,则直接取平行于障碍物直线的方向

分析两根leg线是否会和障碍物直线的相邻边碰撞

if (obstacle1->isConvex_ && det(leftLegDirection, -leftNeighbor->unitDir_) >= 0.0f)

这行判断为true的情况是左端点相邻边的反方向在左leg的左边,如下图所示
在这里插入图片描述
因此速度域的边界不能以左leg为准,否则会和相邻边产生碰撞。直接更新左leg的方向为相邻边的反向。
右边同理

根据当前速度在速度障碍域的不同位置做不同处理

const float t = (obstacle1 == obstacle2 ? 0.5f : ((velocity_ - leftCutoff) * cutoffVec) / absSq(cutoffVec));
const float tLeft = ((velocity_ - leftCutoff) * leftLegDirection);
const float tRight = ((velocity_ - rightCutoff) * rightLegDirection);

上述t的含义表示了当前速度更靠近左右两边哪个端点。0-0.5更靠近左,0.5-1更靠近右,0.5正好居中。
tleft和tright就是判断当前速度投影到leg直线上,依次判断在leg射线上的哪个部分。小于0,则在leg射线的外部
判断物体是否以远离速度障碍域两个端点为目标

if ((t < 0.0f && tLeft < 0.0f) || (obstacle1 == obstacle2 && tLeft < 0.0f && tRight < 0.0f))
if (t > 1.0f && tRight < 0.0f)

在这里插入图片描述
如上图,速度点velocity_rightCutoff-leftCutoff的投影不在向量内部,在leftLegDirection方向的投影也不在leftLegDirection内部(上图浅灰色直线),则条件判断为true。
因此以远离端点为目标。
即灰色箭头为leftCutoff指向velocity_,长度为物体半径radius_,方向顺时针旋转90度即为红色箭头方向,由此够成的绿色区域为速度半平面

const float distSqCutoff = ((t < 0.0f || t > 1.0f || obstacle1 == obstacle2) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (leftCutoff + t * cutoffVec)));
const float distSqLeft = ((tLeft < 0.0f) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (leftCutoff + tLeft * leftLegDirection)));
const float distSqRight = ((tRight < 0.0f) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (rightCutoff + tRight * rightLegDirection)));

这三个变量是分别获取物体速度velocity_到两个leg以及障碍物直线的垂直距离,如果投影不在向量内部,则视作无穷大
判断物体是以远离速度障碍域哪个向量为目标
velocity_cutoffVec
leftLegDirectionrightLegDirection哪个向量方向的直线最近,则远离哪个
根据*velocity_*的位置分别是下图三种情况
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

创建动态物体间的ORCA半平面

首先定义了几个相对参数
relativePosition:相对位置
relativeVelocity:相对速度
combinedRadius:自身半径视作0后,对方的相对半径

处理双方未碰撞的情况
distSq > combinedRadiusSq
判断是否往小圆上计算u

if (dotProduct < 0.0F && dotProduct * dotProduct > combinedRadiusSq * wLengthSq)

先看下面这张图
在这里插入图片描述
图中红色箭头为代码里的向量w,绿线为combineRadiu,黄色线为relaticePosition
dotProduct = w * relativePosition求点积,如果小于0,说明wrelativePosition反向,可能需要往cutoff-circle处调整相对速度。
接下来只要确定证明红色箭头在绿线和黄色线之间,
∠a < ∠b
==>> cosa > cosb
(cosa = dotProduct / |w| / |relativePosition|)
(cosb = combineRadius / |relativePosition|)
==>> dotProduct / |w| / |relativePosition| > combineRadius / |relativePosition|
==>> dotProduct > combineRadius * |w|
两边各平方
==>> dotProduct * dotProduct > combinedRadiusSq * wLengthSq

line.direction = Vector2(unitW.y(), -unitW.x());
u = (combinedRadius * invTimeHorizon - wLength) * unitW;

这段求得向量u的大小为下图中紫色线段长度,方向与w同向,半平面的方向为w顺时针旋转90°
在这里插入图片描述
判断往哪个leg方向计算u

if (det(relativePosition, w) > 0.0F)

求向量wrelativePosition的叉积,可以判断出wrelativePosition的左边还是右边,以此确定离哪个leg更近
求解半平面的方向,原理和前面静态障碍物求leftLegDirection、rightLegDirection方向是一样的,最终推导的公式也是类似的,这里不再重复了,根据不同leg求得的不同方向都在下图黑色箭头中标出来了在这里插入图片描述

u = (relativeVelocity * line.direction) * line.direction - relativeVelocity;

u的代码含义也在上图中标出来了

处理双方已碰撞的情况
本质也是往在圆的里面远离圆心,和未碰撞往小圆上计算u的原理一样

计算半平面的位置

line.point = velocity_ + 0.5F * u;

u计算出来后半平面的位置也就确定了

半平面交集求解
std::size_t linearProgram2(const std::vector<Line> &lines, float radius, const Vector2 &optVelocity, bool directionOpt, Vector2 &result) 

lines:所有半平面
radius:求解时的限定圆形半径(即物体最大速度)
optVelocity:当前物体的期望速度
directionOpt:默认false,执行linearProgram3(交集没有可行解)为true
result:当前步骤求出的最新速度

初始一下默认优化速度

if (directionOpt) {result = optVelocity * radius;
} else if (absSq(optVelocity) > radius * radius) {result = normalize(optVelocity) * radius;
} else {result = optVelocity;
}

遍历所有半平面,对每个半平面进行线性处理

if (det(lines[i].direction, lines[i].point - result) > 0.0F) 

只处理在当前半平面右侧的速度,左侧的速度本身就属于当前半平面的可行解。(注意叉积大于0虽然是逆时针方向。但是这里的是result指向lines[i].point,不是lines[i].point指向result)

线性规划求解

计算当前半平面的可行解,返回有无可行解

bool linearProgram1(const std::vector<Line> &lines, std::size_t lineNo,float radius, const Vector2 &optVelocity, bool directionOpt, Vector2 &result)

linearProgram2参数一样,多了个 lineNo:当前处理的半平面索引id
这个行数是求可行解的核心代码,也是线性规划的过程
在这里插入图片描述

const float dotProduct = lines[lineNo].point * lines[lineNo].direction;

dotProduct就是向量lines[lineNo].pointlines[lineNo].direction上的投影长度。即上图中两个黑色线段的长度
圆的半径,即物体最大速度,必须在半平面的左边才能有解。即上图中粉色线必须大于紫色线。
紫色线标为len,即物体原点到半平面的垂直距离。
需要 radius > len
==>>radius * radius > len * len
(灰线长度为 |lines[lineNo].point|,根据勾股定理)
==>> sqr(radius) > absSq(lines[lineNo].point - sqr(dotProduct)
==>> sqr(radius) + sqr(dotProduct) - absSq(lines[lineNo].point > 0
==>> discriminant > 0
因此,下面代码表示无解退出

if (discriminant < 0.0f) {return false;
}

同时sqrtDiscriminant还表示上图黄色线段的长度
根据勾股定理
discriminant = sqr(radius) - sqr(len)
(sqr(len) = absSq(lines[lineNo].point - sqr(dotProduct))
==>> discriminant = sqr(radius) - absSq(lines[lineNo].point + sqr(dotProduct)

const float sqrtDiscriminant = std::sqrt(discriminant);
float tLeft = -dotProduct - sqrtDiscriminant;
float tRight = -dotProduct + sqrtDiscriminant;

tLeft和tRight即为上图中橙色和蓝色线段的长度。分别表示圆的两个交点到lines[lineNo].point的距离

比较已处理过的半平面

for (size_t i = 0; i < lineNo; ++i)

在当前 lineNo 半平面线性规划求解时,需要和之前处理过的半平面对比来缩小解的范围。最初的解范围是速度圆和半平面直线的两个交点范围。

if (std::fabs(denominator) <= RVO_EPSILON) {if (numerator < 0.0f) {return false;}else {continue;}
}

如果 lineNo 半平面 和 i 半平面平行即*det(lines[lineNo].direction, lines[i].direction)*约等于0,没有交点与当前范围对比,所以进行特殊处理
优因为当前 result 是在 lineNo 半平面右边, 所以如果 i 半平面在 lineNo 半平面左边
(det(lines[i].direction, lines[lineNo].point - lines[i].point) > 0)
一定是和 lineNo 反向,不会对当前求解范围有影响,因此 continue
但是 ilineNo 右边的话这里的处理我有些没看懂, 如果 ilineNo 反向的话,就没有可行解 return false 。但是 ilineNo 如果同向的话,应该也是 continue。有大佬看懂的话方便留个评论解释一下吗。
在这里插入图片描述

const float t = numerator / denominator;

t 的含义是上图中两个半平面交点 o 到 当前半平面 lines[lineNo].point 的距离
因为
图中红色箭头为向量 lines[lineNo].point - lines[i].point
半平面的方向向量,长度都为1, 即 |lines[i].direction| = 1
叉积为两向量模乘正弦,因此 numerator 为上图中紫色线段长度,即 lines[lineNo].pointi 半平面的垂直距离
此时以两个半平面交点 o 为起点,画一个向量 lines[lineNo].direction ,可以得出 denominator 为上图中棕色线段的长度
又因为 |lines[lineNo].direction| = 1
并且 t / |lines[lineNo].direction| = numerator / denominator
即上图黄色线段

if (denominator >= 0.0F) {tRight = std::min(tRight, t);
} else {tLeft = std::max(tLeft, t);
}if (tLeft > tRight) {return false;
}

可行解最初的范围是大于 tLeft 小于 tRight
上图中,当 i 半平面的方向在 lineNo 半平面的右边。此时的可行解一定是大于交点 o 的区域
因此 denominator < 0 时, 需要 ttLeft 对比谁更大。反之同理

const float t = lines[lineNo].direction * (optVelocity - lines[lineNo].point);
if (t < tLeft) {result = lines[lineNo].point + tLeft * lines[lineNo].direction;
} else if (t > tRight) {result = lines[lineNo].point + tRight * lines[lineNo].direction;
} else {result = lines[lineNo].point + t * lines[lineNo].direction;
}

在这里插入图片描述
如上图所示 t 代表了期望速度投射到半平面的阴影长度。根据 t 的不同位置求的不得解

if (directionOpt)

directionOpttrue 时,不会有可行解,直接根据期望速度与半平面方向是否同向来取交点

无可行解
void linearProgram3(const std::vector<Line> &lines, std::size_t numObstLines,std::size_t beginLine, float radius,Vector2 &result)

numObstLines:静态障碍物半平面的数量
beginLine:索引id,表示从哪条半平面开始无法求出可行解
另外三个参数和之前一样

if (det(lines[i].direction, lines[i].point - result) > distance) 

这行代码是求当前解到之后的每条无解半平面的垂直距离,以处理距离最远的半平面为准。我的理解是,离的最远的半平面,是碰撞机率最大的,因为他需要最大的调整速度,才能够调整回不碰撞的速度可行域

这个函数里的遍历都是去掉了静态障碍物的半平面的,因为静态障碍物自身是无法进行碰撞避免处理的

float determinant = det(lines[i].direction, lines[j].direction);
if (std::fabs(determinant) <= RVO_EPSILON) {if (lines[i].direction * lines[j].direction > 0.0f) {continue;}else {line.point = 0.5f * (lines[i].point + lines[j].point);}
}
else {line.point = lines[i].point + (det(lines[j].direction, lines[i].point - lines[j].point) / determinant) * lines[i].direction;
}

这段代码是,将当前处理的 j 半平面与已处理过的 i 半平面做对比。
如果两者平行并同向即重合了,则略过
如果平行但反向,获取两个半平面起始点的连线中点坐标
如果不平行,则获取两个半平面交点的坐标(推导原理和前面一样)

line.direction = normalize(lines[j].direction - lines[i].direction);

这行代码,是让已处理的半平面往 此当前处理的半平面,旋转一半的角度再取反
形成新的半平面交集,再进行求解
在这里插入图片描述

如上图,最初的三个半平面可行域是绿色阴影部分,没有公共交集。
i 半平面和 i+1 半平面都往 j 半平面方向旋转了一半夹角的长度,再取反,形成新的蓝色阴影区域,有公共交集。再进行线性规划求解

旋转的角度是根据 normalize(lines[j].direction - lines[i].direction) 设置的
我试着改变了 lines[i].direction 的长度,使旋转的角度不同

float len = 1;
line.direction = normalize(lines[j].direction - lines[i].direction * len);

len为1是旋转1/2的夹角,len越解决0,旋转后的半平面越接近 j 半平面,len越大,旋转后的半平面越近 i 半平面的反向。

演示效果

静态图

以下是几种设置不同旋转角度后,求得的速度,以四个球最下方的那个球为分析目标,
三根不同的射线就是三条半平面,此时的三个半平面是没有可行解的。球的黑点位置就是新的速度朝向。

设置不同len时的,物体的新速度朝向:
len = 1,旋转1/2角度

在这里插入图片描述
len = 0.5
在这里插入图片描述
len = 0.1
在这里插入图片描述
len = 5
在这里插入图片描述
len = 10
在这里插入图片描述
i半平面直接无转向
在这里插入图片描述
可以看到,不同的参数,物体的避障趋势是不一样的,但是最终都是可以成功避障的

动态效果

len = 1,旋转1/2夹角
在这里插入图片描述
len < 1/2,更趋近于0,i半平面旋转更多
在这里插入图片描述
len > 1,更趋近于无穷大,i半平面旋转更少
在这里插入图片描述
i半平面不转向
在这里插入图片描述

大量物体

len = 1,旋转1/2夹角
在这里插入图片描述
len < 1/2,更趋近于0,i半平面旋转更多
在这里插入图片描述
len > 1,更趋近于无穷大,i半平面旋转更少
在这里插入图片描述
i半平面不转向
在这里插入图片描述

一些问题

某些情况下,可能会出现物体都静止不动的情况
在这里插入图片描述
在这里插入图片描述

有的时候出现双方,避障权重一样,速度一样,方向相对,位置也是相对。
最后都静止不动了。以上述例子来看,下面的球速度始终是垂直向上,上面的球速度始终是垂直向下。双打的速度始终在碰撞半平面的可行域里,但是为了避免碰撞,双方的速度越来越小

在这里插入图片描述
再加上,时间的间隔也非常小
在这里插入图片描述
最终由于浮点数计算,导致物体的位置每帧不变
在这里插入图片描述
位置,速度都不变,ORCA求的新速度也不变,就导致最终的效果是双方最终都停在原地了

但实际项目中,一般不会有这种情况,因为此时只要一个外来的变化量,或者双方目标速度,权重,啥的有一点点变化。就随便一个微量情况,打破了这种平衡,物体就会继续移动下去。只是可能会出现物体在原地磨蹭了很久之后,才相互错开。因此。具体项目在使用源代码的时候,还需要根据不同需求做不同的调整

这篇关于AI - 碰撞避免算法分析(ORCA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/714604

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异