AI - 碰撞避免算法分析(ORCA)

2024-02-16 13:04
文章标签 算法 分析 ai 避免 碰撞 orca

本文主要是介绍AI - 碰撞避免算法分析(ORCA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对比VO/RVO

ORCA算法检测碰撞的原理和VO/RVO基本一样的,只是碰撞区域的计算去掉了一定时间以外才可能发生的碰撞,因此碰撞区域的扇形去掉了前面的部分,由圆锥头变成了个圆
在这里插入图片描述
另一个最主要的区别是,求新的速度,是根据相对多个不同物体生成的半平面计算获得。
半平面:
在这里插入图片描述
上图里,u即之前VO和RVO求出的相对速度避免碰撞需要偏移的最短速度向量VO/RVO分析。VO/RVO里由于只考虑避障双方的两个物体,所以期望速度Vaopt加上了u之后,便获得了结果。在ORCA里,会考虑多个碰撞物体,因此会过Vaopt加上u/2之后的点,做u向量的垂直线,而获得一条直线。这条直线一侧所有的点(即ORCA半平面)表示的速度,都会让a不与b相撞。
对于多个碰撞物体,可以求出多个半平面,通过这些半平面的交集,来确定物体的新速度

论文理论的分析

具体的分析网上有挺多的,理论本身还是比较好理解的,这里直接转载别人的了ORCA(RVO2)算法优化整理版

源码分析

ORCA源码地址

RVOSimulator

RVOSimulator相当于整个碰撞避免逻辑的管理模拟器。
一些参数
timeStep_:管理器每次模拟的时间间隔,传入的基本就是游戏运行的每帧时间
kdTree_:一个数组结构的KD树,用来管理每个机器人的相邻目标
agents_:管理器控制的机器人
obstacles_:管理器控制的静态障碍物
主要函数:
addAgent:向管理器添加需要进行碰撞避免处理的机器人
doStep:模拟一次所有机器人碰撞避免处理:先构建kd树,计算每个机器人的相邻目标,在计算新的速度,然后更新位置

void RVOSimulator::doStep() {kdTree_->buildAgentTree();
#ifdef _OPENMP
#pragma omp parallel for
#endif /* _OPENMP */for (int i = 0; i < static_cast<int>(agents_.size()); ++i) {agents_[i]->computeNeighbors(kdTree_);agents_[i]->computeNewVelocity(timeStep_);}#ifdef _OPENMP
#pragma omp parallel for
#endif /* _OPENMP */for (int i = 0; i < static_cast<int>(agents_.size()); ++i) {agents_[i]->update(timeStep_);}globalTime_ += timeStep_;
}

KdTree

kd树的原理之前文章有分析过,这里先跳过了
KDTree

Agent

实际碰撞物的代理目标,可以每帧中把游戏实际物体的参数传入,通过RVOSimulator计算后,再取出对应代理目标的位置信息更新游戏实际物体
类似这样:

m_sim->setTimeStep(dt);
for(auto aiNode: _aiNodes) {int idx = aiNode->getId();Vec2 velocity = aiNode->getVelocity();m_sim->setAgentMaxSpeed(idx, 1/dt);m_sim->setAgentPrefVelocity(idx, Vector2(velocity.x * 1 / dt, velocity.y * 1 / dt));
}
m_sim->doStep();
for (auto aiNode : _aiNodes) {int idx = aiNode->getId();Vector2 velocity = m_sim->getAgentVelocity(idx);Vector2 v = m_sim->getAgentPosition(idx);aiNode->setVelocity(Vec2(velocity.x() * dt, velocity.y() * dt));aiNode->setPosition(Vec2(v.x(), v.y()));
}

Agent参数

agentNeighbors_:相邻的动态目标
obstacleNeighbors_:相邻的静态障碍物
orcaLines_:储存的半平面信息
newVelocity_:新的避障速度
*position_*位置
prefVelocity_:最佳目标速度
velocity_:当前速度
id_:唯一id
maxNeighbors_:最大避障邻居数(太遥远的过多邻居没有避障意义)
maxSpeed_:最大速度
neighborDist_:查找避障领据的判定位置(太遥远的目标没有避障意义)
radius_:物体半径
timeHorizon_:提前避障的时间,即只判定在一定时间范围内可能的碰撞
timeHorizonObst_:静态物体提前避障的时间

避障核心代码入口

void Agent::computeNewVelocity()

创建静态障碍物的ORCA半平面

其中障碍物的类:当前point_和下一个障碍物nextObstacle_的point_会构成一条直线,unitDir_是当前point_指向下一个point_的单位方向向量,isConvex_表示是否凹角

bool isConvex_;
Obstacle *nextObstacle_;
Vector2 point_;
Obstacle *prevObstacle_;
Vector2 unitDir_;

判断当前静态障碍直线在已处理半平面的右侧,且两个端点到半平面的距离大于物体的半径。因为新速度只能取半平面左侧,即下图中的情况,则新速度永远不会与当前处理的静态障碍直线相交。可以直接忽略
在这里插入图片描述

const Vector2 relativePosition1 = obstacle1->point_ - position_;
const Vector2 relativePosition2 = obstacle2->point_ - position_;
bool alreadyCovered = false;for (size_t j = 0; j < orcaLines_.size(); ++j) {if (det(invTimeHorizonObst * relativePosition1 - orcaLines_[j].point, orcaLines_[j].direction) - invTimeHorizonObst * radius_ >= -RVO_EPSILON && det(invTimeHorizonObst * relativePosition2 - orcaLines_[j].point, orcaLines_[j].direction) - invTimeHorizonObst * radius_ >=  -RVO_EPSILON) {alreadyCovered = true;break;}}

半平面的坐标计算都是以自身位置为坐标系计算。因此障碍物直线的坐标也要转换一下。即relativePosition1
代码里invTimeHorizonObst根据不同的判定时间,向量长度会有不同的缩放,但相对比例是不变的,分析的时候可以都当成1来处理,来忽略掉。
det(invTimeHorizonObst * relativePosition1 - orcaLines_[j].point, orcaLines_[j].direction)
这行代码是半平面的点到障碍物直线一个端点的向量,与半平面单位方向向量取叉积,因为叉积的模等于两矢量各自的模的积再乘以两矢量夹角的正弦,其中一个向量为单位矢量,则结果就是另一个向量到单位向量直线上的垂直距离。
>= -RVO_EPSILON 叉积大于0表示在向量逆时针方向,即新的障碍物直线端点在已处理的半平面右边

判定物体的坐标相对于障碍物直线在哪个方向
在这里插入图片描述
描述起来比较拗口,可以看上图,结合代码

const Vector2 obstacleVector = obstacle2->point_ - obstacle1->point_;
const float s = (-relativePosition1 * obstacleVector) / absSq(obstacleVector);
const float distSqLine = absSq(-relativePosition1 - s * obstacleVector);

(-relativePosition1 * obstacleVector) 求点积,两矢量模相乘,再乘夹角的余弦。
即 s = |-relativePosition1|*|obstacleVector| * cosθ / |obstacleVector|
s为物体坐标在障碍物直线上的投影点到障碍物直线起始点的长度,即上图中红色线段长度。s的大小可以表示此时物体在障碍物直线的左边,右边,还是两个端点之间
distSqLine 为物体坐标到障碍物直线的垂直记录,即上图中灰色线段长度

已经碰撞,对于物体相对于障碍物直线的不同碰撞点,做不同处理

if (s < 0.0f && distSq1 <= radiusSq) {

物体与障碍物直线起始点1,即左端点相撞,如果起始点1对应的是凸角的话,就将当前线放入要处理的半平面。至于凹角为什么不处理,我的理解是,如果是凹角的话,物体对于凹角的另一条线的s一定是在0-1之间,即在障碍物直线两个端点之一,处理的权重更大。
在这里插入图片描述

line.point = Vector2(0.0f, 0.0f);
line.direction = normalize(Vector2(-relativePosition1.y(), relativePosition1.x()));

因为静态障碍物是不会动的,因此半平面直接以物体自身为目标点,方向以垂直偏离碰撞点为目的,即上图中白色箭头。

if (s > 1.0f && distSq2 <= radiusSq)

物体与障碍物直线起始点2,即右端点相撞。和左端点类似,只是加了一个判断,就是下图中,obstacle2-unitDir在红线右侧的方向的话,就忽略这条障碍线的碰撞处理,以相邻边的障碍线处理为准

if (obstacle2->isConvex_ && det(relativePosition2, obstacle2->unitDir_) >= 0.0f)

在这里插入图片描述

if (s >= 0.0f && s < 1.0f && distSqLine <= radiusSq)

物体在障碍物两个端点间碰撞,比较简单,直接远离就行,下图红色区域即为新速度可选择区域
在这里插入图片描述
未碰撞,同样根据物体相对障碍物直线的不同位置,做不同处理

if (s < 0.0f && distSqLine <= radiusSq)

物体在障碍物左端点左边,如下图,并且不能是凹角,因为distSqLine <= radiusSq在这个情况下,如果是凹角的话,前一条障碍物直线一定会和物体已经碰撞,则先处理逃离碰撞直线的情况
在这里插入图片描述
接下来这段代码很关键,直接看很难理解,因为代码是直接写了拆解了多个步骤之后的数学公式

const float leg1 = std::sqrt(distSq1 - radiusSq);
leftLegDirection = Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;
rightLegDirection = Vector2(relativePosition1.x() * leg1 + relativePosition1.y() * radius_, -relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;

在这里插入图片描述

先说结论,leftLegDirection和rightLegDirection就是上图中绿色箭头所指的方向,两根线都是障碍物直线端点到圆的切线。
在这里插入图片描述
在这里插入图片描述
上图中红色箭头为向量,即障碍物直线左端点指向物体中心的
(-relativePosition1.x,-relativePosition1.y)
将该向量,逆时针旋转θ
在这里插入图片描述
在这里插入图片描述
将cosθ和sinθ代入,提取出分母 1/distSq1
最后将向量取反,解出来的结果就是
Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1
获得了leftLegDirection,即上图中绿色箭头。
leftLegDirection同理,只不过是顺时针旋转

if (s > 1.0f && distSqLine <= radiusSq)

物体在障碍物右端点右边,与左边同理,略过
物体在障碍物直线之间
如果端点的角是凸角的情况下,就是leftLegDirection,rightLegDirection如下图所示
在这里插入图片描述
如果端点是凹角,则直接取平行于障碍物直线的方向

分析两根leg线是否会和障碍物直线的相邻边碰撞

if (obstacle1->isConvex_ && det(leftLegDirection, -leftNeighbor->unitDir_) >= 0.0f)

这行判断为true的情况是左端点相邻边的反方向在左leg的左边,如下图所示
在这里插入图片描述
因此速度域的边界不能以左leg为准,否则会和相邻边产生碰撞。直接更新左leg的方向为相邻边的反向。
右边同理

根据当前速度在速度障碍域的不同位置做不同处理

const float t = (obstacle1 == obstacle2 ? 0.5f : ((velocity_ - leftCutoff) * cutoffVec) / absSq(cutoffVec));
const float tLeft = ((velocity_ - leftCutoff) * leftLegDirection);
const float tRight = ((velocity_ - rightCutoff) * rightLegDirection);

上述t的含义表示了当前速度更靠近左右两边哪个端点。0-0.5更靠近左,0.5-1更靠近右,0.5正好居中。
tleft和tright就是判断当前速度投影到leg直线上,依次判断在leg射线上的哪个部分。小于0,则在leg射线的外部
判断物体是否以远离速度障碍域两个端点为目标

if ((t < 0.0f && tLeft < 0.0f) || (obstacle1 == obstacle2 && tLeft < 0.0f && tRight < 0.0f))
if (t > 1.0f && tRight < 0.0f)

在这里插入图片描述
如上图,速度点velocity_rightCutoff-leftCutoff的投影不在向量内部,在leftLegDirection方向的投影也不在leftLegDirection内部(上图浅灰色直线),则条件判断为true。
因此以远离端点为目标。
即灰色箭头为leftCutoff指向velocity_,长度为物体半径radius_,方向顺时针旋转90度即为红色箭头方向,由此够成的绿色区域为速度半平面

const float distSqCutoff = ((t < 0.0f || t > 1.0f || obstacle1 == obstacle2) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (leftCutoff + t * cutoffVec)));
const float distSqLeft = ((tLeft < 0.0f) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (leftCutoff + tLeft * leftLegDirection)));
const float distSqRight = ((tRight < 0.0f) ? std::numeric_limits<float>::infinity() : absSq(velocity_ - (rightCutoff + tRight * rightLegDirection)));

这三个变量是分别获取物体速度velocity_到两个leg以及障碍物直线的垂直距离,如果投影不在向量内部,则视作无穷大
判断物体是以远离速度障碍域哪个向量为目标
velocity_cutoffVec
leftLegDirectionrightLegDirection哪个向量方向的直线最近,则远离哪个
根据*velocity_*的位置分别是下图三种情况
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

创建动态物体间的ORCA半平面

首先定义了几个相对参数
relativePosition:相对位置
relativeVelocity:相对速度
combinedRadius:自身半径视作0后,对方的相对半径

处理双方未碰撞的情况
distSq > combinedRadiusSq
判断是否往小圆上计算u

if (dotProduct < 0.0F && dotProduct * dotProduct > combinedRadiusSq * wLengthSq)

先看下面这张图
在这里插入图片描述
图中红色箭头为代码里的向量w,绿线为combineRadiu,黄色线为relaticePosition
dotProduct = w * relativePosition求点积,如果小于0,说明wrelativePosition反向,可能需要往cutoff-circle处调整相对速度。
接下来只要确定证明红色箭头在绿线和黄色线之间,
∠a < ∠b
==>> cosa > cosb
(cosa = dotProduct / |w| / |relativePosition|)
(cosb = combineRadius / |relativePosition|)
==>> dotProduct / |w| / |relativePosition| > combineRadius / |relativePosition|
==>> dotProduct > combineRadius * |w|
两边各平方
==>> dotProduct * dotProduct > combinedRadiusSq * wLengthSq

line.direction = Vector2(unitW.y(), -unitW.x());
u = (combinedRadius * invTimeHorizon - wLength) * unitW;

这段求得向量u的大小为下图中紫色线段长度,方向与w同向,半平面的方向为w顺时针旋转90°
在这里插入图片描述
判断往哪个leg方向计算u

if (det(relativePosition, w) > 0.0F)

求向量wrelativePosition的叉积,可以判断出wrelativePosition的左边还是右边,以此确定离哪个leg更近
求解半平面的方向,原理和前面静态障碍物求leftLegDirection、rightLegDirection方向是一样的,最终推导的公式也是类似的,这里不再重复了,根据不同leg求得的不同方向都在下图黑色箭头中标出来了在这里插入图片描述

u = (relativeVelocity * line.direction) * line.direction - relativeVelocity;

u的代码含义也在上图中标出来了

处理双方已碰撞的情况
本质也是往在圆的里面远离圆心,和未碰撞往小圆上计算u的原理一样

计算半平面的位置

line.point = velocity_ + 0.5F * u;

u计算出来后半平面的位置也就确定了

半平面交集求解
std::size_t linearProgram2(const std::vector<Line> &lines, float radius, const Vector2 &optVelocity, bool directionOpt, Vector2 &result) 

lines:所有半平面
radius:求解时的限定圆形半径(即物体最大速度)
optVelocity:当前物体的期望速度
directionOpt:默认false,执行linearProgram3(交集没有可行解)为true
result:当前步骤求出的最新速度

初始一下默认优化速度

if (directionOpt) {result = optVelocity * radius;
} else if (absSq(optVelocity) > radius * radius) {result = normalize(optVelocity) * radius;
} else {result = optVelocity;
}

遍历所有半平面,对每个半平面进行线性处理

if (det(lines[i].direction, lines[i].point - result) > 0.0F) 

只处理在当前半平面右侧的速度,左侧的速度本身就属于当前半平面的可行解。(注意叉积大于0虽然是逆时针方向。但是这里的是result指向lines[i].point,不是lines[i].point指向result)

线性规划求解

计算当前半平面的可行解,返回有无可行解

bool linearProgram1(const std::vector<Line> &lines, std::size_t lineNo,float radius, const Vector2 &optVelocity, bool directionOpt, Vector2 &result)

linearProgram2参数一样,多了个 lineNo:当前处理的半平面索引id
这个行数是求可行解的核心代码,也是线性规划的过程
在这里插入图片描述

const float dotProduct = lines[lineNo].point * lines[lineNo].direction;

dotProduct就是向量lines[lineNo].pointlines[lineNo].direction上的投影长度。即上图中两个黑色线段的长度
圆的半径,即物体最大速度,必须在半平面的左边才能有解。即上图中粉色线必须大于紫色线。
紫色线标为len,即物体原点到半平面的垂直距离。
需要 radius > len
==>>radius * radius > len * len
(灰线长度为 |lines[lineNo].point|,根据勾股定理)
==>> sqr(radius) > absSq(lines[lineNo].point - sqr(dotProduct)
==>> sqr(radius) + sqr(dotProduct) - absSq(lines[lineNo].point > 0
==>> discriminant > 0
因此,下面代码表示无解退出

if (discriminant < 0.0f) {return false;
}

同时sqrtDiscriminant还表示上图黄色线段的长度
根据勾股定理
discriminant = sqr(radius) - sqr(len)
(sqr(len) = absSq(lines[lineNo].point - sqr(dotProduct))
==>> discriminant = sqr(radius) - absSq(lines[lineNo].point + sqr(dotProduct)

const float sqrtDiscriminant = std::sqrt(discriminant);
float tLeft = -dotProduct - sqrtDiscriminant;
float tRight = -dotProduct + sqrtDiscriminant;

tLeft和tRight即为上图中橙色和蓝色线段的长度。分别表示圆的两个交点到lines[lineNo].point的距离

比较已处理过的半平面

for (size_t i = 0; i < lineNo; ++i)

在当前 lineNo 半平面线性规划求解时,需要和之前处理过的半平面对比来缩小解的范围。最初的解范围是速度圆和半平面直线的两个交点范围。

if (std::fabs(denominator) <= RVO_EPSILON) {if (numerator < 0.0f) {return false;}else {continue;}
}

如果 lineNo 半平面 和 i 半平面平行即*det(lines[lineNo].direction, lines[i].direction)*约等于0,没有交点与当前范围对比,所以进行特殊处理
优因为当前 result 是在 lineNo 半平面右边, 所以如果 i 半平面在 lineNo 半平面左边
(det(lines[i].direction, lines[lineNo].point - lines[i].point) > 0)
一定是和 lineNo 反向,不会对当前求解范围有影响,因此 continue
但是 ilineNo 右边的话这里的处理我有些没看懂, 如果 ilineNo 反向的话,就没有可行解 return false 。但是 ilineNo 如果同向的话,应该也是 continue。有大佬看懂的话方便留个评论解释一下吗。
在这里插入图片描述

const float t = numerator / denominator;

t 的含义是上图中两个半平面交点 o 到 当前半平面 lines[lineNo].point 的距离
因为
图中红色箭头为向量 lines[lineNo].point - lines[i].point
半平面的方向向量,长度都为1, 即 |lines[i].direction| = 1
叉积为两向量模乘正弦,因此 numerator 为上图中紫色线段长度,即 lines[lineNo].pointi 半平面的垂直距离
此时以两个半平面交点 o 为起点,画一个向量 lines[lineNo].direction ,可以得出 denominator 为上图中棕色线段的长度
又因为 |lines[lineNo].direction| = 1
并且 t / |lines[lineNo].direction| = numerator / denominator
即上图黄色线段

if (denominator >= 0.0F) {tRight = std::min(tRight, t);
} else {tLeft = std::max(tLeft, t);
}if (tLeft > tRight) {return false;
}

可行解最初的范围是大于 tLeft 小于 tRight
上图中,当 i 半平面的方向在 lineNo 半平面的右边。此时的可行解一定是大于交点 o 的区域
因此 denominator < 0 时, 需要 ttLeft 对比谁更大。反之同理

const float t = lines[lineNo].direction * (optVelocity - lines[lineNo].point);
if (t < tLeft) {result = lines[lineNo].point + tLeft * lines[lineNo].direction;
} else if (t > tRight) {result = lines[lineNo].point + tRight * lines[lineNo].direction;
} else {result = lines[lineNo].point + t * lines[lineNo].direction;
}

在这里插入图片描述
如上图所示 t 代表了期望速度投射到半平面的阴影长度。根据 t 的不同位置求的不得解

if (directionOpt)

directionOpttrue 时,不会有可行解,直接根据期望速度与半平面方向是否同向来取交点

无可行解
void linearProgram3(const std::vector<Line> &lines, std::size_t numObstLines,std::size_t beginLine, float radius,Vector2 &result)

numObstLines:静态障碍物半平面的数量
beginLine:索引id,表示从哪条半平面开始无法求出可行解
另外三个参数和之前一样

if (det(lines[i].direction, lines[i].point - result) > distance) 

这行代码是求当前解到之后的每条无解半平面的垂直距离,以处理距离最远的半平面为准。我的理解是,离的最远的半平面,是碰撞机率最大的,因为他需要最大的调整速度,才能够调整回不碰撞的速度可行域

这个函数里的遍历都是去掉了静态障碍物的半平面的,因为静态障碍物自身是无法进行碰撞避免处理的

float determinant = det(lines[i].direction, lines[j].direction);
if (std::fabs(determinant) <= RVO_EPSILON) {if (lines[i].direction * lines[j].direction > 0.0f) {continue;}else {line.point = 0.5f * (lines[i].point + lines[j].point);}
}
else {line.point = lines[i].point + (det(lines[j].direction, lines[i].point - lines[j].point) / determinant) * lines[i].direction;
}

这段代码是,将当前处理的 j 半平面与已处理过的 i 半平面做对比。
如果两者平行并同向即重合了,则略过
如果平行但反向,获取两个半平面起始点的连线中点坐标
如果不平行,则获取两个半平面交点的坐标(推导原理和前面一样)

line.direction = normalize(lines[j].direction - lines[i].direction);

这行代码,是让已处理的半平面往 此当前处理的半平面,旋转一半的角度再取反
形成新的半平面交集,再进行求解
在这里插入图片描述

如上图,最初的三个半平面可行域是绿色阴影部分,没有公共交集。
i 半平面和 i+1 半平面都往 j 半平面方向旋转了一半夹角的长度,再取反,形成新的蓝色阴影区域,有公共交集。再进行线性规划求解

旋转的角度是根据 normalize(lines[j].direction - lines[i].direction) 设置的
我试着改变了 lines[i].direction 的长度,使旋转的角度不同

float len = 1;
line.direction = normalize(lines[j].direction - lines[i].direction * len);

len为1是旋转1/2的夹角,len越解决0,旋转后的半平面越接近 j 半平面,len越大,旋转后的半平面越近 i 半平面的反向。

演示效果

静态图

以下是几种设置不同旋转角度后,求得的速度,以四个球最下方的那个球为分析目标,
三根不同的射线就是三条半平面,此时的三个半平面是没有可行解的。球的黑点位置就是新的速度朝向。

设置不同len时的,物体的新速度朝向:
len = 1,旋转1/2角度

在这里插入图片描述
len = 0.5
在这里插入图片描述
len = 0.1
在这里插入图片描述
len = 5
在这里插入图片描述
len = 10
在这里插入图片描述
i半平面直接无转向
在这里插入图片描述
可以看到,不同的参数,物体的避障趋势是不一样的,但是最终都是可以成功避障的

动态效果

len = 1,旋转1/2夹角
在这里插入图片描述
len < 1/2,更趋近于0,i半平面旋转更多
在这里插入图片描述
len > 1,更趋近于无穷大,i半平面旋转更少
在这里插入图片描述
i半平面不转向
在这里插入图片描述

大量物体

len = 1,旋转1/2夹角
在这里插入图片描述
len < 1/2,更趋近于0,i半平面旋转更多
在这里插入图片描述
len > 1,更趋近于无穷大,i半平面旋转更少
在这里插入图片描述
i半平面不转向
在这里插入图片描述

一些问题

某些情况下,可能会出现物体都静止不动的情况
在这里插入图片描述
在这里插入图片描述

有的时候出现双方,避障权重一样,速度一样,方向相对,位置也是相对。
最后都静止不动了。以上述例子来看,下面的球速度始终是垂直向上,上面的球速度始终是垂直向下。双打的速度始终在碰撞半平面的可行域里,但是为了避免碰撞,双方的速度越来越小

在这里插入图片描述
再加上,时间的间隔也非常小
在这里插入图片描述
最终由于浮点数计算,导致物体的位置每帧不变
在这里插入图片描述
位置,速度都不变,ORCA求的新速度也不变,就导致最终的效果是双方最终都停在原地了

但实际项目中,一般不会有这种情况,因为此时只要一个外来的变化量,或者双方目标速度,权重,啥的有一点点变化。就随便一个微量情况,打破了这种平衡,物体就会继续移动下去。只是可能会出现物体在原地磨蹭了很久之后,才相互错开。因此。具体项目在使用源代码的时候,还需要根据不同需求做不同的调整

这篇关于AI - 碰撞避免算法分析(ORCA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/714604

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖