【深度学习】S2 数学基础 P3 微积分(上)导数与微分

2024-02-15 10:52

本文主要是介绍【深度学习】S2 数学基础 P3 微积分(上)导数与微分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 圆与微积分
  • 导数与微分
    • 导数的含义
    • 数学定义
    • 常用函数微分
    • 常用微分法则
    • Python 实现

圆与微积分

公元前 2500 年,古希腊数学家阿基米德通过一种名为 “逼近法” 的技巧来估算圆的面积。他采用一个有奇数边的正多边形来外切圆,并用一个有偶数边的正多边形来内接圆。通过计算这两个多边形面积的差值,阿基米德得到了圆面积的一个近似值。

这种方法实际上是一种面积累加的过程,与现代积分学中的思想 —— “将一个区域分割成无数小部分,计算每个小部分的面积,并将这些面积加总以得到整个区域的总面积。” 有着密切的联系。

大约 2000 年后,微分理论被发明。微分学中,优化问题占据了核心地位,这也是深度学习的最终目标之一。正是由于这个原因,微积分成为了深度学习的三大数学基础之一。

而微积分学中的微分学与积分学是相辅相成的,

  • 微分学研究的是函数在某一点处的局部性质;
  • 积分学则关注的是函数在整个区间上的累积性质。

这两者共同构成了微积分学的基本框架,并在解决实际问题中发挥着重要作用。


导数与微分

导数的含义

在深度学习中,导数的含义为:对于模型中的每一个参数,如果我们对这个参数增加或者减少一个无穷小的量,可以观察到损失函数如何相应地快速增加或减少,从而对该参数对模型性能的影响程度有一个度量的标准。

数学定义

导数的数学定义表述为:
f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h f'(x)=\lim_{h \to 0} \frac {f(x+h) - f(x)}{h} f(x)=h0limhf(x+h)f(x)

若函数 f f f 在点 a a a 处的导数存在,我们便称函数 f f f a a a 处可微。这里的导数 f ′ ( x ) f'(x) f(x) 表示函数 f ( x ) f(x) f(x) 关于其变量 x x x 的瞬时变化速率。

常用函数微分

以下是一些常用函数的微分操作描述:

  • C ′ = d C d x = 0 C'=\frac {dC} {dx} = 0 C=dxdC=0 C C C 是常数)
  • x n ′ = d x n d x = n x n − 1 {x^n}'=\frac {dx^n} {dx} = nx^{n-1} xn=dxdxn=nxn1
  • e x ′ = d e x d x = e x {e^x}'=\frac {de^x} {dx} = e^x ex=dxdex=ex
  • l n ( x ) ′ = 1 x ln(x)'= \frac {1} {x} ln(x)=x1

常用微分法则

  • 常数相乘法则:
    d d x [ C f ( x ) ] = C d d x f ( x ) \frac d {dx} [Cf(x)] = C \frac d {dx} f(x) dxd[Cf(x)]=Cdxdf(x)
  • 加法法则:
    d d x [ f ( x ) + g ( x ) ] = d d x f ( x ) + d d x g ( x ) \frac d {dx} [f(x)+g(x)] = \frac d {dx} f(x) + \frac d {dx} g(x) dxd[f(x)+g(x)]=dxdf(x)+dxdg(x)
  • 乘法法则:
    d d x [ f ( x ) g ( x ) ] = f ( x ) d d x [ g ( x ) ] + g ( x ) d d x [ f ( x ) ] \frac d {dx} [f(x)g(x)] = f(x) \frac d {dx} [g(x)] + g(x) \frac d {dx} [f(x)] dxd[f(x)g(x)]=f(x)dxd[g(x)]+g(x)dxd[f(x)]
  • 除法法则:
    d d x [ f ( x ) g ( x ) ] = g ( x ) d d x [ f ( x ) ] − f ( x ) d d x [ g ( x ) ] [ g ( x ) ] 2 \frac d {dx} [\frac {f(x)} {g(x)}] = \frac {g(x) \frac d {dx} [f(x)] - f(x) \frac d {dx} [g(x)]} {[g(x)]^2} dxd[g(x)f(x)]=[g(x)]2g(x)dxd[f(x)]f(x)dxd[g(x)]

Python 实现

e . g . e.g. e.g. 定义一个函数 u = f ( x ) = 3 x 2 − 4 x u=f(x)=3x^2-4x u=f(x)=3x24x 以及其导数;

# 函数表达式
def f(x):return 3 * x ** 2 - 4 * x# 导数表达式
def numerical_lim(f, x, h):return (f(x + h) - f(x)) / h

深度学习三大数学基础 - 微积分(上)导数与微分;
下一节博文内容:深度学习数学基础 - 微积分(下),包含偏导数、梯度和链式法则。

2024.2.14

这篇关于【深度学习】S2 数学基础 P3 微积分(上)导数与微分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711191

相关文章

C++ 右值引用(rvalue references)与移动语义(move semantics)深度解析

《C++右值引用(rvaluereferences)与移动语义(movesemantics)深度解析》文章主要介绍了C++右值引用和移动语义的设计动机、基本概念、实现方式以及在实际编程中的应用,... 目录一、右值引用(rvalue references)与移动语义(move semantics)设计动机1

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

JavaScript装饰器从基础到实战教程

《JavaScript装饰器从基础到实战教程》装饰器是js中一种声明式语法特性,用于在不修改原始代码的情况下,动态扩展类、方法、属性或参数的行为,本文将从基础概念入手,逐步讲解装饰器的类型、用法、进阶... 目录一、装饰器基础概念1.1 什么是装饰器?1.2 装饰器的语法1.3 装饰器的执行时机二、装饰器的

Java JAR 启动内存参数配置指南(从基础设置到性能优化)

《JavaJAR启动内存参数配置指南(从基础设置到性能优化)》在启动Java可执行JAR文件时,合理配置JVM内存参数是保障应用稳定性和性能的关键,本文将系统讲解如何通过命令行参数、环境变量等方式... 目录一、核心内存参数详解1.1 堆内存配置1.2 元空间配置(MetASPace)1.3 线程栈配置1.

Java枚举类型深度详解

《Java枚举类型深度详解》Java的枚举类型(enum)是一种强大的工具,它不仅可以让你的代码更简洁、可读,而且通过类型安全、常量集合、方法重写和接口实现等特性,使得枚举在很多场景下都非常有用,本文... 目录前言1. enum关键字的使用:定义枚举类型什么是枚举类型?如何定义枚举类型?使用枚举类型:2.

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础