本文主要是介绍OpenCV(3)ML库-Expectation - Maximization 算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
最大期望算法(Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。
/****************************************************************************************\
* Expectation - Maximization *
\****************************************************************************************/struct CV_EXPORTS CvEMParams //参数设定 EM算法估计混合高斯模型所需要的参数
{CvEMParams() : nclusters(10), cov_mat_type(1/*CvEM::COV_MAT_DIAGONAL*/),start_step(0/*CvEM::START_AUTO_STEP*/), probs(0), weights(0), means(0), covs(0){term_crit=cvTermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, FLT_EPSILON );}CvEMParams( int _nclusters, int _cov_mat_type=1/*CvEM::COV_MAT_DIAGONAL*/,int _start_step=0/*CvEM::START_AUTO_STEP*/,CvTermCriteria _term_crit=cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, FLT_EPSILON),const CvMat* _probs=0, const CvMat* _weights=0, const CvMat* _means=0, const CvMat** _covs=0 ) :nclusters(_nclusters), cov_mat_type(_cov_mat_type), start_step(_start_step),probs(_probs), weights(_weights), means(_means), covs(_covs), term_crit(_term_crit){}int nclusters;int cov_mat_type;int start_step; const CvMat* probs; //初始的后验概率 const CvMat* weights; //初始的各个成分的概率const CvMat* means; //初始的均值const CvMat** covs; //初始的协方差矩阵CvTermCriteria term_crit; //E步和M步 迭代停止的准则。 EM算法会在一定的迭代次数之后(term_crit.num_iter),或者当模型参数在两次迭代之间的变化小于预定值(term_crit.epsilon)时停止
};class CV_EXPORTS CvEM : public CvStatModel //模型设置
{
public:// Type of covariation matricesenum { COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2 }; //// The initial stepenum { START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0 };CvEM();CvEM( const CvMat* samples, const CvMat* sample_idx=0,CvEMParams params=CvEMParams(), CvMat* labels=0 );//CvEM (CvEMParams params, CvMat * means, CvMat ** covs, CvMat * weights, CvMat * probs, CvMat * log_weight_div_det, CvMat * inv_eigen_values, CvMat** cov_rotate_mats);virtual ~CvEM();virtual bool train( const CvMat* samples, const CvMat* sample_idx=0,CvEMParams params=CvEMParams(), CvMat* labels=0 );virtual float predict( const CvMat* sample, CvMat* probs ) const;#ifndef SWIGCvEM( const cv::Mat& samples, const cv::Mat& sample_idx=cv::Mat(),CvEMParams params=CvEMParams(), cv::Mat* labels=0 );virtual bool train( const cv::Mat& samples, const cv::Mat& sample_idx=cv::Mat(),CvEMParams params=CvEMParams(), cv::Mat* labels=0 );virtual float predict( const cv::Mat& sample, cv::Mat* probs ) const;
#endifvirtual void clear();int get_nclusters() const;const CvMat* get_means() const;const CvMat** get_covs() const;const CvMat* get_weights() const;const CvMat* get_probs() const;inline double get_log_likelihood () const { return log_likelihood; };// inline const CvMat * get_log_weight_div_det () const { return log_weight_div_det; };
// inline const CvMat * get_inv_eigen_values () const { return inv_eigen_values; };
// inline const CvMat ** get_cov_rotate_mats () const { return cov_rotate_mats; };protected:virtual void set_params( const CvEMParams& params,const CvVectors& train_data );virtual void init_em( const CvVectors& train_data );virtual double run_em( const CvVectors& train_data );virtual void init_auto( const CvVectors& samples );virtual void kmeans( const CvVectors& train_data, int nclusters,CvMat* labels, CvTermCriteria criteria,const CvMat* means );CvEMParams params;double log_likelihood;CvMat* means;CvMat** covs;CvMat* weights;CvMat* probs;CvMat* log_weight_div_det;CvMat* inv_eigen_values;CvMat** cov_rotate_mats;
};
循环重复直到收敛 {
(E步)对于每一个i,计算
(M步)计算
#include "stdafx.h"
#include <ml.h>
#include <iostream>
#include <highgui.h>
#include <cv.h>
#include <cxcore.h>
using namespace cv;
using namespace std;int main( int argc, char** argv )
{const int N = 4;const int N1 = (int)sqrt((double)N);const CvScalar colors[] = {{{0,0,255}},{{0,255,0}},{{0,255,255}},{{255,255,0}}};int i, j;int nsamples = 100;CvRNG rng_state = cvRNG(-1);CvMat* samples = cvCreateMat( nsamples, 2, CV_32FC1 );CvMat* labels = cvCreateMat( nsamples, 1, CV_32SC1 );IplImage* img = cvCreateImage( cvSize( 500, 500 ), 8, 3 );float _sample[2];CvMat sample = cvMat( 1, 2, CV_32FC1, _sample );//EM算法初始化CvEM em_model;CvEMParams params;CvMat samples_part;cvReshape( samples, samples, 2, 0 );for( i = 0; i < N; i++ ){CvScalar mean, sigma;// form the training samplescvGetRows( samples, &samples_part, i*nsamples/N, (i+1)*nsamples/N );mean = cvScalar(((i%N1)+1.)*img->width/(N1+1), ((i/N1)+1.)*img->height/(N1+1));sigma = cvScalar(30,30);cvRandArr( &rng_state, &samples_part, CV_RAND_NORMAL, mean, sigma );}cvReshape( samples, samples, 1, 0 );// initialize model's parametersparams.covs = NULL;params.means = NULL;params.weights = NULL;params.probs = NULL;params.nclusters = N;params.cov_mat_type = CvEM::COV_MAT_SPHERICAL;params.start_step = CvEM::START_AUTO_STEP;params.term_crit.max_iter = 10;params.term_crit.epsilon = 0.1;params.term_crit.type = CV_TERMCRIT_ITER|CV_TERMCRIT_EPS;// cluster the dataem_model.train( samples, 0, params, labels );#if 0// the piece of code shows how to repeatedly optimize the model// with less-constrained parameters (COV_MAT_DIAGONAL instead of COV_MAT_SPHERICAL)// when the output of the first stage is used as input for the second.CvEM em_model2;params.cov_mat_type = CvEM::COV_MAT_DIAGONAL;params.start_step = CvEM::START_E_STEP;params.means = em_model.get_means();params.covs = (const CvMat**)em_model.get_covs();params.weights = em_model.get_weights();em_model2.train( samples, 0, params, labels );// to use em_model2, replace em_model.predict() with em_model2.predict() below
#endif// classify every image pixelcvZero( img );for( i = 0; i < img->height; i++ ){for( j = 0; j < img->width; j++ ){CvPoint pt = cvPoint(j, i);sample.data.fl[0] = (float)j;sample.data.fl[1] = (float)i;int response = cvRound(em_model.predict( &sample, NULL ));CvScalar c = colors[response];cvCircle( img, pt, 1, cvScalar(c.val[0]*0.75,c.val[1]*0.75,c.val[2]*0.75), CV_FILLED );}}//draw the clustered samplesfor( i = 0; i < nsamples; i++ ){CvPoint pt;pt.x = cvRound(samples->data.fl[i*2]);pt.y = cvRound(samples->data.fl[i*2+1]);cvCircle( img, pt, 1, colors[labels->data.i[i]], CV_FILLED );}cvNamedWindow( "EM-clustering result", 1 );cvShowImage( "EM-clustering result", img );cvWaitKey(0);cvReleaseMat( &samples );cvReleaseMat( &labels );return 0;
}
参考:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html
http://zhidao.baidu.com/link?url=12xrCFpWm1U-bYb4V8uxf3uu2ZDTFlwpDzbWe7HjOrNWXdsCQTlA466N78ZUDWP-jFAcVsTQo9JyKW28o86ng_
http://www.360doc.com/content/13/0624/13/10942270_295158557.shtml
http://fuliang.iteye.com/blog/1621633
http://wiki.opencv.org.cn/index.php/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E4%B8%AD%E6%96%87%E5%8F%82%E8%80%83%E6%89%8B%E5%86%8C#CvEMParams
http://www.seas.upenn.edu/~bensapp/opencvdocs/ref/opencvref_ml.htm#ch_em
http://hi.baidu.com/darkhorse/item/cc58043eb19800159dc65e70
这篇关于OpenCV(3)ML库-Expectation - Maximization 算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!