本文主要是介绍神经网络:卷积神经网络中的BatchNorm,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一、BN介绍
1.原理
在机器学习中让输入的数据之间相关性越少越好,最好输入的每个样本都是均值为0方差为1。在输入神经网络之前可以对数据进行处理让数据消除共线性,但是这样的话输入层的激活层看到的是一个分布良好的数据,但是较深的激活层看到的的分布就没那么完美了,分布将变化的很严重。这样会使得训练神经网络变得更加困难。所以添加BatchNorm层,在训练的时候BN层使用batch来估计数据的均值和方差,然后用均值和方差来标准化这个batch的数据,并且随着不同的batch经过网络,均值和方差都在做累计平均。在测试的时候就直接作为标准化的依据。
这样的方法也有可能导致降低神经网络的表示能力,因为某些层的全局最优的特征可能不是均值为0或者方差为1的。所以BN层也是能够进行学习每个特征维度的缩放gamma和平移beta的来避免这样的情况。
2.BN层前向传播
def batchnorm_forward(x, gamma, beta, bn_param):"""先进行标准化再进行平移缩放running_mean = momentum * running_mean + (1 - momentum) * sample_meanrunning_var = momentum * running_var + (1 - momentum) * sample_varInput:- x: (N, D) 输入的数据- gamma: (D,) 每个特征维度数据的缩放- beta: (D,) 每个特征维度数据的偏移- bn_param: 字典,有如下键值:- mode: 'train'/'test' 必须指定- eps: 一个常量为了维持数值稳定,保证不会除0- momentum: 动量- running_mean: (D,) 积累的均值- running_var: (D,) 积累的方差Returns:- out: (N,D)- cache: 反向传播时需要的数据"""mode = bn_param['mode']eps = bn_param.get('eps', 1e-5)momentum = bn_param.get('momentum', 0.9)N, D = x.shaperunning_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype))running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype))out, cache = None, Noneif mode == 'train':sample_mean = np.mean(x, axis=0)sample_var = np.var(x, axis=0)# 先标准化x_hat = (x - sample_mean)/(np.sqrt(sample_var + eps))# 再做缩放偏移out = gamma * x_hat + betacache = (gamma, x, sample_mean, sample_var, eps, x_hat)running_mean = momentum * running_mean + (1-momuntum)*sample_meanrunning_var = momentum * running_var + (1-momentum)*sample_varelif mode == 'test':# 先标准化#x_hat = (x - running_mean)/(np.sqrt(running_var+eps))# 再做缩放偏移#out = gamma * x_hat + beta# 或者是下面的骚写法scale = gamma/(np.sqrt(running_var + eps))out = x*scale + (beta - running_mean*scale)else:raise ValueError('Invalid forward batchnorm mode "%s"' % mode)bn_param['running_mean'] = running_meanbn_param['running_var'] = running_varreturn out, cache
3.BN层反向传播
def batchnorm_barckward(out, cache):"""反向传播的简单写法,易于理解Inputs:- dout: (N,D) dloss/dout- cache: (gamma, x, sample_mean, sample_var, eps, x_hat)Returns:- dx: (N,D)- dgamma: (D,) 每个维度的缩放和平移参数不同- dbeta: (D,)"""dx, dgamma, dbeta = None, None, None# unpack cachegamma, x, u_b, sigma_squared_b, eps, x_hat = cacheN = x.shape[0]dx_1 = gamma * dout # dloss/dx_hat = dloss/dout * gamma (N, D)dx_2_b = np.sum((x - u_b) * dx_1, axis=0)dx_2_a = ((sigma_squared_b + eps)**-0.5)*dx_1dx_3_b = (-0.5) * ((sigma_squared_b + eps)**-1.5)*dx_2_bdx_4_b = dx_3_b * 1dx_5_b = np.ones_like(x)/N * dx_4_bdx_6_b = 2*(x-u_b)*dx_5_bdx_7_a = dx_6_b*1 + dx_2_a*1dx_7_b = dx_6_b*1 * dx_2_a*1dx_8_b = -1*np.sum(dx_7_b, axis=0)dx_9_b = np.ones_like(x)/N * dx_8_bdx_10 = dx_9_b + dx_7_adgamma = np.sum(x_hat * dout, axis=0)dbeta = np.sum(dout, axis=0)dx = dx_10return dx, dgamma, dbeta
下面是直接使用公式来计算:
def batchnorm_backward_alt(dout, cache):dx, dgamma, dbeta = None, None, None# unpack cachegamma, x, u_b, sigma_squared_b, eps, x_hat = cacheN = x.shape[0]dx_hat = dout * gammadvar = np.sum(dx_hat* (x - sample_mean) * -0.5 * np.power(sample_var + eps, -1.5), axis = 0)dmean = np.sum(dx_hat * -1 / np.sqrt(sample_var +eps), axis = 0) + dvar * np.mean(-2 * (x - sample_mean), axis =0)dx = 1 / np.sqrt(sample_var + eps) * dx_hat + dvar * 2.0 / N * (x-sample_mean) + 1.0 / N * dmeandgamma = np.sum(x_hat * dout, axis = 0)dbeta = np.sum(dout , axis = 0)return dx, dgamma, dbeta
4.BN有什么作用
- 对于不好的权重初始化有更高的鲁棒性,仍然能得到较好的效果。
- 能更好的避免过拟合。
- 解决梯度消失/爆炸问题,BN防止了前向传播的时候数值过大或者过小,这样就能让反向传播时梯度处于一个较好的区间内。
二、卷积神经网络中的BN
1.前向传播
def spatial_batchnorm_forward(x, gamma, beta, bn_param):"""利用普通神经网络的BN来实现卷积神经网络的BNInputs:- x: (N, C, H, W)- gamma: (C,)缩放系数- beta: (C,)平移系数- bn_param: 包含如下键的字典- mode: 'train'/'test'必须的键- eps: 数值稳定需要的一个较小的值- momentum: 一个常量,用来处理running mean和var的。如果momentum=0 那么之前不利用之前的均值和方差。momentum=1表示不利用现在的均值和方差,一般设置momentum=0.9- running_mean: (C,)- running_var: (C,)Returns:- out: (N, C, H, W)- cache: 反向传播需要的数据,这里直接使用了普通神经网络的cache"""N, C, H, W = x.shape# transpose之后(N, W, H, C) channel在这里就可以看成是特征temp_out, cache = batchnorm_forward(x.transpose(0, 3, 2, 1).reshape((N*H*W, C)), gamma, beta, bn_param)# 再恢复shapeout = temp_output.reshape(N, W, H, C).transpose(0, 3, 2, 1)return out, cache
2.反向传播
def spatial_batchnorm_backward(dout, cache):"""利用普通神经网络的BN反向传播实现卷积神经网络中的BN反向传播Inputs:- dout: (N, C, H, W) 反向传播回来的导数- cache: 前向传播时的中间数据Returns:- dx: (N, C, H, W)- dgamma: (C,) 缩放系数的导数- dbeta: (C,) 偏移系数的导数"""dx, dgamma, dbeta = None, None, NoneN, C, H, W = dout.shape# 利用普通神经网络的BN进行计算 (N*H*W, C)channel看成是特征维度dx_temp, dgamma, dbeta = batchnorm_backward_alt(dout.transpose(0, 3, 2, 1).reshape((N*H*W, C)), cache)# 将shape恢复dx = dx_temp.reshape(N, W, H, C).transpose(0, 3, 2, 1)return dx, dgamma, dbeta
这篇关于神经网络:卷积神经网络中的BatchNorm的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!