激光雷达LiDAR和相机的.bag数据解析与对齐

2024-02-13 11:38

本文主要是介绍激光雷达LiDAR和相机的.bag数据解析与对齐,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LiDAR数据解析

Ubuntu18.04 系统,已安装ROS

  1. 查看bag信息,在相应文件夹下打开终端
rosbag info xxx.bag

获得对应的topics

topics:      /velodyne_points                          940 msgs    : sensor_msgs/PointCloud2/zed2i/zed_node/left/image_rect_color     822 msgs    : sensor_msgs/Image      /zed2i/zed_node/right/image_rect_color   1111 msgs    : sensor_msgs/Image

可以看到我这有三个topic,并且每一个对应的帧数是不一样的,在数据录录制过程中存在这丢帧的现象,希望能够对解析后输出的图片带有时间戳方便对齐

  1. 提取点云数据
rosrun pcl_ros bag_to_pcd <your_bag_name> <choose_topic> <output_directory>
// for example
rosrun pcl_ros bag_to_pcd t1.bag /velodyne_points /home/data/output_t1

相机数据解析

可以直接用下面的python代码进行解析,解析后的每张图片以时间戳命名

# coding:utf-8
# get_image.pyimport roslib;
import rosbag
import rospy
import cv2
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
from cv_bridge import CvBridgeError# 存放解析输出图片的位置
path = '/home/summer/MarineData/t6/picture/'  class ImageCreator():def __init__(self):self.bridge = CvBridge()# 要读取的bag文件;with rosbag.Bag('t6.bag', 'r') as bag:  for topic, msg, t in bag.read_messages():# 图像的topic;if topic == "/zed2i/zed_node/right/image_rect_color":  try:cv_image = self.bridge.imgmsg_to_cv2(msg, "bgr8")except CvBridgeError as e:printetimestr = "%.6f" % msg.header.stamp.to_sec()# %.6f表示小数点后带有6位,可根据精确度需要修改;image_name = timestr + ".jpg"  # 图像命名:时间戳.jpgcv2.imwrite(path + image_name, cv_image)  # 保存;if __name__ == '__main__':# rospy.init_node(PKG)try:image_creator = ImageCreator()except rospy.ROSInterruptException:pass

将这个pyhton文件和bag文件放在同一个目录下面,在该目录下打开终端,运行:

python2 get_image.py

因为我电脑中安装了python2 和python3 ,而这个python文件需要用到的是ros中自带的python2, ros中自带的pyhton2有用来解析图片的相关库,就不需要另外安装.故在此指定python2.

数据对齐

# align_data.pyimport os
from shutil import copy#初步解析后点云和图片的存放地址
Lpath='/home/summer/MarineData/t6/pointcloud/'
Cpath='/home/summer/MarineData/t6/picture/'# 存在对齐后的点云图片
New_L_path ='/home/summer/MarineData/t6/alignment/point/'
New_C_path ='/home/summer/MarineData/t6/alignment/picture/'jpg_appendix='.jpg'
pcd_appendix='.pcd'def file2txt(file_path,txt_path):names = os.listdir(file_path)image_ids = open(txt_path,'w')for name in names:image_ids.write('%s\n'%(name))image_ids.close()def changename(filepath,appendix):flist=os.listdir(filepath)n=0for i in flist:oldname=filepath+flist[n]#取时间戳的前0-11位,重新命名newname=filepath+flist[n][:12]+appendixos.rename(oldname,newname)n+=1#print(oldname,'---->',newname)def find_timestap(Lidar_path,Camera_path):Lidar_list = os.listdir(Lidar_path)Camera_list = os.listdir(Camera_path)Both_list=list()for n,name in enumerate(Lidar_list):Lidar_list[n]=name.rstrip('.pcd')n+=1for n,name in enumerate(Camera_list):Camera_list[n]=name.rstrip('.jpg')n+=1n=0# 利用图片的索引去点云中找,一般以帧数少的作为索引for i in Camera_list:current_time = Camera_list[n]if current_time in Lidar_list:Both_list.append(current_time)Lidar_list.remove(current_time)n+=1return Both_listdef copy_file(old_path,new_path,appendix,item_list):for name in item_list:name=name+appendixfrom_path=os.path.join(old_path,name)to_path=new_pathcopy(from_path,to_path)#按照指定位数时间戳重新命名
changename(Lpath,pcd_appendix)
changename(Cpath,jpg_appendix)
#寻找时间戳对齐的点云和图片,返回所有文件名的list
Both_list=find_timestap(Lpath,Cpath)
#从原文件夹复制到对齐文件夹中
copy_file(Lpath,New_L_path,pcd_appendix,Both_list)
copy_file(Cpath,New_C_path,jpg_appendix,Both_list)

这篇关于激光雷达LiDAR和相机的.bag数据解析与对齐的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/705437

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧