激光雷达LiDAR和相机的.bag数据解析与对齐

2024-02-13 11:38

本文主要是介绍激光雷达LiDAR和相机的.bag数据解析与对齐,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LiDAR数据解析

Ubuntu18.04 系统,已安装ROS

  1. 查看bag信息,在相应文件夹下打开终端
rosbag info xxx.bag

获得对应的topics

topics:      /velodyne_points                          940 msgs    : sensor_msgs/PointCloud2/zed2i/zed_node/left/image_rect_color     822 msgs    : sensor_msgs/Image      /zed2i/zed_node/right/image_rect_color   1111 msgs    : sensor_msgs/Image

可以看到我这有三个topic,并且每一个对应的帧数是不一样的,在数据录录制过程中存在这丢帧的现象,希望能够对解析后输出的图片带有时间戳方便对齐

  1. 提取点云数据
rosrun pcl_ros bag_to_pcd <your_bag_name> <choose_topic> <output_directory>
// for example
rosrun pcl_ros bag_to_pcd t1.bag /velodyne_points /home/data/output_t1

相机数据解析

可以直接用下面的python代码进行解析,解析后的每张图片以时间戳命名

# coding:utf-8
# get_image.pyimport roslib;
import rosbag
import rospy
import cv2
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
from cv_bridge import CvBridgeError# 存放解析输出图片的位置
path = '/home/summer/MarineData/t6/picture/'  class ImageCreator():def __init__(self):self.bridge = CvBridge()# 要读取的bag文件;with rosbag.Bag('t6.bag', 'r') as bag:  for topic, msg, t in bag.read_messages():# 图像的topic;if topic == "/zed2i/zed_node/right/image_rect_color":  try:cv_image = self.bridge.imgmsg_to_cv2(msg, "bgr8")except CvBridgeError as e:printetimestr = "%.6f" % msg.header.stamp.to_sec()# %.6f表示小数点后带有6位,可根据精确度需要修改;image_name = timestr + ".jpg"  # 图像命名:时间戳.jpgcv2.imwrite(path + image_name, cv_image)  # 保存;if __name__ == '__main__':# rospy.init_node(PKG)try:image_creator = ImageCreator()except rospy.ROSInterruptException:pass

将这个pyhton文件和bag文件放在同一个目录下面,在该目录下打开终端,运行:

python2 get_image.py

因为我电脑中安装了python2 和python3 ,而这个python文件需要用到的是ros中自带的python2, ros中自带的pyhton2有用来解析图片的相关库,就不需要另外安装.故在此指定python2.

数据对齐

# align_data.pyimport os
from shutil import copy#初步解析后点云和图片的存放地址
Lpath='/home/summer/MarineData/t6/pointcloud/'
Cpath='/home/summer/MarineData/t6/picture/'# 存在对齐后的点云图片
New_L_path ='/home/summer/MarineData/t6/alignment/point/'
New_C_path ='/home/summer/MarineData/t6/alignment/picture/'jpg_appendix='.jpg'
pcd_appendix='.pcd'def file2txt(file_path,txt_path):names = os.listdir(file_path)image_ids = open(txt_path,'w')for name in names:image_ids.write('%s\n'%(name))image_ids.close()def changename(filepath,appendix):flist=os.listdir(filepath)n=0for i in flist:oldname=filepath+flist[n]#取时间戳的前0-11位,重新命名newname=filepath+flist[n][:12]+appendixos.rename(oldname,newname)n+=1#print(oldname,'---->',newname)def find_timestap(Lidar_path,Camera_path):Lidar_list = os.listdir(Lidar_path)Camera_list = os.listdir(Camera_path)Both_list=list()for n,name in enumerate(Lidar_list):Lidar_list[n]=name.rstrip('.pcd')n+=1for n,name in enumerate(Camera_list):Camera_list[n]=name.rstrip('.jpg')n+=1n=0# 利用图片的索引去点云中找,一般以帧数少的作为索引for i in Camera_list:current_time = Camera_list[n]if current_time in Lidar_list:Both_list.append(current_time)Lidar_list.remove(current_time)n+=1return Both_listdef copy_file(old_path,new_path,appendix,item_list):for name in item_list:name=name+appendixfrom_path=os.path.join(old_path,name)to_path=new_pathcopy(from_path,to_path)#按照指定位数时间戳重新命名
changename(Lpath,pcd_appendix)
changename(Cpath,jpg_appendix)
#寻找时间戳对齐的点云和图片,返回所有文件名的list
Both_list=find_timestap(Lpath,Cpath)
#从原文件夹复制到对齐文件夹中
copy_file(Lpath,New_L_path,pcd_appendix,Both_list)
copy_file(Cpath,New_C_path,jpg_appendix,Both_list)

这篇关于激光雷达LiDAR和相机的.bag数据解析与对齐的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/705437

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱