AUV直线路径跟踪仿真-反步滑模方法

2024-02-13 10:50

本文主要是介绍AUV直线路径跟踪仿真-反步滑模方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

文章目录

前言

一、整体思路

二、控制器设计

1.纵向推力-反步法

2.转艏力矩-滑模方法

三、虚拟AUV速度推算

四、仿真实现

1.艏向制导误差和滑模面函数

 2.控制器和模型解算

3.解耦速度得到艏向角和漂角

 4.积分速度得到位置信息

 5.得到位置误差和趋近角信息

6.海流干扰

7.可视化

1.位置误差

2.期望路径

3.控制力

 五、仿真结果分析

前言

本文进行AUV水平面的直线路径跟踪的控制设计和simulink的仿真搭建。


提示:以下是本篇文章正文内容,下面案例可供参考

一、整体思路

将整个AUV系统进行解耦,将直线路径跟踪问题转化为对AUV速度和艏向角的控制,并分别设计控制器,其中,纵向速度控制时运用反步法进行控制器设计,艏向角控制则利用滑模方法。在本文中,所涉及的AUV含有主推和垂直舵,属于欠驱动,缺少横向输入。

二、控制器设计

1.纵向推力-反步法

期望速度u^{_{d}}=1m/s,根据反步法原理进行设计,具体参考:

AUV控制中的反步法_工程湛湛的博客-CSDN博客

得到的控制力应当为:

F_{u}=m_{u}(\dot{u}_{d}-K_{1}(u-u_{d}))+d_{u}

为进一步增强控制性能,结合李雅普诺夫函数的一阶导小于零的要求,在控制率中引入了有利于控制的非线性项:

-K_{2}(\sqrt{\left | u-u_{d} \right |}\cdot tanh(u-u_{d}))

则纵向推力重新变为:

F_{u}=m_{u}(\dot{u}_{d}-K_{1}(u-u_{d})-K_{2}(\sqrt{\left | u-u_{d} \right |})\cdot tanh(u-u_{d}))+d_{u}

2.转艏力矩-滑模方法

在进行转艏力矩的设计之前,需要先了解两个知识点,一个是Serret-Frenet坐标系,另一个是视线法。参考:

基于Serret-Frenet坐标系下的跟踪误差方程_工程湛湛的博客-CSDN博客

AUV路径跟踪视线法(Line Of Sight)制导原理_工程湛湛的博客-CSDN博客

根据AUV视线法的制导原理,需要AUV的航迹角与SF坐标系与定系夹角的差值向趋近角趋近,此时我们定义趋近误差为:

\psi_{e}=\psi+\beta-\phi_{F}-\delta

通过滑模方法进行转艏力矩控制器设计的过程参考:

滑模方法设计AUV路径跟踪转艏力矩_工程湛湛的博客-CSDN博客

最后得到的控制率为:

N=m_{r}(-k_{1}\dot{\psi}_{e}-\epsilon tanh(s)-k_{2}s-\ddot{\beta}+\ddot{\phi}_{F}+\ddot{\delta})+d_{r}

至此,便得到了纵向推力和转艏力矩的控制率。

三、虚拟AUV速度推算

参考:虚拟向导AUV的速度推算_工程湛湛的博客-CSDN博客

得到的三维虚拟向导速度为:

\dot{s}=U_{B}cos\psi_{e}cos\theta_{e}+k_{s}x_{e}

结合水平面的特点,\theta_{e}=0,则:

\dot{s}=U_{B}cos\psi_{e}+k_{s}x_{e}

根据输入,在Simulink中得到s的一阶导:

上式中phie为定系与SF坐标系的夹角:

 随后在path1的s函数中定义所要跟踪的期望路径,输出期望路径的SF坐标系与定系的夹角和横向期望路径和纵向期望路径信息。

四、仿真实现

以下按照笔者思路,进行整个Simulink仿真程序的复现。

1.艏向制导误差和滑模面函数

首先得到AUV的航迹角和SF坐标系与定系的夹角:

得到phi角,通过该角对趋近角的趋近即可完成AUV的制导,因此得到的误差角为:

 根据误差得到的滑模面函数为:

 2.控制器和模型解算

 根据所设计的纵向推力和转艏力矩,设计一系列的输入,得到控制力的输出:

得到控制力后输入到AUV的水平面动力学模型进行解算,从而得到AUV的速度信息,水平面的模型表示为:

 仿真中current为海流干扰,通过相对速度对AUV的速度进行修正,即correct,最后输出AUV的纵向速度、横向速度和转艏角速度,并计算出AUV的和速度vt。

3.解耦速度得到艏向角和漂角

对模型解算得到的速度信息解耦,计算得到艏向角信息:

由横向速度和纵向速度得到漂角信息:

 4.积分速度得到位置信息

对得到的速度信息进行积分处理,同时设置位置的初始值,便可得到AUV的实时位置信息:

 在积分器中进行初始值的设置。

 5.得到位置误差和趋近角信息

通过得到对速度积分得到的实时位置信息,以及SF坐标系得到的期望路径信息,做差得到误差信息,再通过坐标变换将误差转换到定系,转换角为phif,在得到横向误差之后计算得到趋近角。

6.海流干扰

通过设置AUV在定系中的速度,然后通过艏向角将速度转换到动系,便得到了在动系下的海流速度信息,和AUV速度进行做差,便得到了AUV相对海流的相对速度。

7.可视化

1.位置误差

2.期望路径

3.控制力


 五、仿真结果分析

搭建完后设置仿真时间为200s运行,得到的仿真结果。

纵向速度:

横向速度:

艏向角速度:

 纵向推力:

转艏力矩:

 横向位置误差:

 纵向位置误差:

 制导误差角信息:

 期望路径二维图:

AUV位置二维图像:

 从仿真结果来看,AUV的跟踪效果良好,说明了所设计控制器的有效性。

这篇关于AUV直线路径跟踪仿真-反步滑模方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/705339

相关文章

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

POJ1269 判断2条直线的位置关系

题目大意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。 解题思路: 先判断两条直线p1p2, q1q2是否共线, 如果不是,再判断 直线 是否平行, 如果还不是, 则两直线相交。  判断共线:  p1p2q1 共线 且 p1p2q2 共线 ,共线用叉乘为 0  来判断,  判断 平行:  p1p

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo