【深度学习 目标检测】R-CNN系列算法全面概述(一文搞懂R-CNN、Fast R-CNN、Faster R-CNN的来龙去脉)

本文主要是介绍【深度学习 目标检测】R-CNN系列算法全面概述(一文搞懂R-CNN、Fast R-CNN、Faster R-CNN的来龙去脉),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🚀个人主页:为梦而生~ 关注我一起学习吧!
💡相关专栏
深度学习 :现代人工智能的主流技术介绍
机器学习 :相对完整的机器学习基础教学!
💡往期推荐
【机器学习基础】一元线性回归(适合初学者的保姆级文章)
【机器学习基础】多元线性回归(适合初学者的保姆级文章)
【机器学习基础】决策树(Decision Tree)
【机器学习基础】K-Means聚类算法
【机器学习基础】DBSCAN
【机器学习基础】支持向量机
【机器学习基础】集成学习
【机器学习 & 深度学习】神经网络简述
【机器学习 & 深度学习】卷积神经网络简述
💡本期内容:R-CNN系列算法是经典的two-stage的目标检测算法,相较于one-stage精度更高,但是速度略有下降。从R-CNN到Fast R-CNN和Faster R-CNN,整个思路是:候选框选取——特征提取——对候选框进行分类(判定类别)和回归(修正候选框位置)。R-CNN系列算法在目标检测领域有着重要的影响和应用,是计算机视觉领域的重要算法之一。


文章目录

  • 0 前言
  • 1 R-CNN
    • 1.1 算法步骤
      • 1.1.1 候选区域的生成
      • 1.1.2 提取特征
      • 1.1.3 判定类别
      • 1.1.4 精细修正候选框的位置
    • 1.2 算法总结
    • 1.3 存在问题
  • 2 Fast R-CNN
    • 2.1 算法步骤
    • 2.2 与Fast R-CNN的区别
      • 2.2.1 共享卷积层
      • 2.2.2 ROI pooling
      • 2.2.3 分类器和边界框回归器
      • 2.2.4 损失函数
    • 2.3 算法总结
  • 3 Faster R-CNN
    • 3.1 算法步骤
    • 3.2 RPN
      • 3.2.1 anchor
      • 3.2.2 IOU
      • 3.2.3 损失函数
    • 3.3 Faster R-CNN的训练
    • 3.4 算法总结


0 前言

RCNN在2013年在目标检测领域首次使用深度学习和卷积神经网络,他与Alex net一起引爆了21世纪第二个十年计算机视觉领域的技术爆炸。

在这里插入图片描述

后续所有基于深度学习的目标检测——特别是两阶段目标检测算法。如Fast RCNN Faster R-CNN,都是在R-CNN上进行的迭代升级。

在这里插入图片描述

所以弄懂RCNN特别重要。甚至可以说,没弄懂RCN后边的算法根本就看不懂。


1 R-CNN

1.1 算法步骤

  1. 一张图像生成1K~2K个候选区域(使用Selective Search方法)
  2. 对每个候选区域,使用深度网络提取特征
  3. 特征送入每一类的SVM分类器,判别是否属于该类
  4. 使用回归器精细修正候选框位置

在这里插入图片描述

1.1.1 候选区域的生成

利用selective Search算法通过图像分割的方法得到一些原始区域,然后使用一些合并策略将这些区域合并,得到一个层次化的区域结构,而这些结构就包含着可能需要的物体。

在这里插入图片描述

1.1.2 提取特征

将2000候选区域缩放到227x227pixel,接着将候选区域输入事先训练好的AlexNet CNN网络获取4096维的特征得到2000×4096维矩阵。

在这里插入图片描述

1.1.3 判定类别

将2000×4096维特征与20个SVM组成的权值矩阵4096×20相乘,获得2000×20维矩阵表示每个建议框是某个目标类别的得分。分别对上述2000×20维矩阵中每一列即每一类进行非极大值抑制剔除重叠建议框,得到该列即该类中得分最高的一些建议框。

在这里插入图片描述

进行非极大值抑制处理

在这里插入图片描述

1.1.4 精细修正候选框的位置

对NMS处理后剩余的建议框进一步筛选。接着分别用20个回归器对上述20个类别中剩余的建议框进行回归操作,最终得到每个类别的修正后的得分最高的bounding box。

在这里插入图片描述

如图,黄色框口P表示建议框Region Proposal,绿色窗口G表示实际框Ground Truth,红色窗口 G ^ \hat{G} G^表示Region Proposal进行回归后的预测窗口,可以用最小二乘法解决的线性回归问题。

1.2 算法总结

在这里插入图片描述

R-CNN算法可以分为以下步骤:

  1. 候选区域生成:利用Selective Search算法在每张图像上生成约2000个候选区域。这些候选区域被认为是可能包含目标的区域。
  2. 特征提取:将每个候选区域缩放为227×227,然后输入到预训练的CNN网络中,提取出4096维的特征向量。这一步将每个候选区域转换为固定大小的向量。
  3. 分类和回归:对于每个候选区域,使用SVM分类器进行分类,判断是否属于该类。然后使用回归器精细修正候选框的位置。

到后面我们会看到,这几个部分会不断融合,形成一个端到端的框架。

1.3 存在问题

  1. 测试速度慢:
    测试一张图片约53s (CPU)。用Selective Search算法提取候选框用时约2秒,一张图像内候选框之间存在大量重叠,提取特征操作冗余。
  2. 训练速度慢:
    过程及其繁琐
  3. 训练所需空间大:
    对于SVM和bbox回归训练,需要从每个图像中的每个目标候选框提取特征,并写入磁盘。对于非常深的网络,如VGG16,从VOC07训练集上的5k图像上提取的特征需要数百GB的存储空间。

2 Fast R-CNN

Fast R-CNN是作者Ross Girshick继R-CNN后的又一力作。同样使用vGG16作为网络的backbone,与R-CNN相比训练时间快9倍,测试推理时间快213倍,准确率从62%提升至66%(再Pascal voc数据集上)。

在这里插入图片描述

2.1 算法步骤

  1. 一张图像生成1K~2K个候选区域(使用Selective Search方法)
  2. 将图像输入网络得到相应的特征图,将SS算法生成的候选框投影到特征图上获得相应的特征矩阵
  3. 将每个特征矩阵通过ROI pooling层缩放到7x7大小的特征图,接着将特征图展平通过一系列全连接层得到预测结果

在这里插入图片描述

2.2 与Fast R-CNN的区别

2.2.1 共享卷积层

一次性计算整张图像特征

R-CNN依次将候选框区域输入卷积神经网络得到特征。

Fast-RCNN将整张图像送入网络,紧接着从特征图像上提取相应的候选区域。这些候选区域的特征不需要再重复计算

在这里插入图片描述

2.2.2 ROI pooling

不限制输入图像的尺寸,便于计算
统一缩放为7×7大小的特征图

在这里插入图片描述

2.2.3 分类器和边界框回归器

该网络的框架是这样的:

  • 首先将图像输入到CNN网络得到feature map
  • 再根据共享卷积层的映射关系对应到相应的特征矩阵
  • 之后通过ROI pooling层缩放为7×7大小的矩阵
  • 然后进行展平处理,在经过两个全连接层之后,得到feature vector
  • 在feature vector的基础上,再并联两个全连接层
  • 一个是分类器用于分类概率的预测,另一个回归器用于边界框回归参数的预测

分类器输出N+1个类别的概率(N为检测目标的种类,1为背景)共N+1个节点

在这里插入图片描述

边界框回归器输出对应N+1个类别的候选边界框回归参数(dx, dy, dw, dh),共(N+1)x4个节点

在这里插入图片描述

回归的具体计算如下图所示:

在这里插入图片描述

p x , p y , p w , p h p_x,p_y,p_w,p_h px,py,pw,ph分别为候选框的中心x,y坐标,以及宽高
G ^ x , G ^ y , G ^ w , G ^ h \hat{G}_x,\hat{G}_y,\hat{G}_w,\hat{G}_h G^x,G^y,G^w,G^h分别为最终预测的边界框中心x,y坐标,以及宽高

在这里插入图片描述

2.2.4 损失函数

它的损失函数分为分类损失和边界框回归损失
在这里插入图片描述

  • p是分类器预测的softmax概率分布 p = ( p 0 , … , p k ) p=(p_0,…,p_k) p=(p0,,pk)
  • u对应目标真实类别标签
  • t u t^u tu对应边界框回归器预测的对应类别u的回归参数 t x u , t y u , t w u , t h u t^u_x,t^u_y,t^u_w,t^u_h txu,tyu,twu,thu
  • v对应真实目标的边界框回归参数 v x , x y , v w , v h v_x,x_y,v_w,v_h vx,xy,vw,vh

其中,分类损失在原论文中说的是使用log损失 L c l s ( p , u ) = − log ⁡ p u L_{c l s}(p, u)=-\log p_{u} Lcls(p,u)=logpu

边界框回归损失为:
L l o c ( t u , v ) = ∑ i ∈ { x , y , w , h } smooth ⁡ L 1 ( t i u − v i ) smooth ⁡ L 1 ( x ) = { 0.5 x 2 if  ∣ x ∣ < 1 ∣ x ∣ − 0.5 otherwise  \begin{array}{l} L_{l o c}\left(t^{u}, v\right)=\sum_{i \in\{x, y, w, h\}} \operatorname{smooth}_{L_{1}}\left(t_{i}^{u}-v_{i}\right) \\ \operatorname{smooth}_{L_{1}}(x)=\left\{\begin{array}{ll} 0.5 x^{2} & \text { if }|x|<1 \\ |x|-0.5 & \text { otherwise } \end{array}\right. \end{array} Lloc(tu,v)=i{x,y,w,h}smoothL1(tiuvi)smoothL1(x)={0.5x2x0.5 if x<1 otherwise 

2.3 算法总结

在这里插入图片描述

该算法首先还是使用selective search寻找候选框

但是后面的特征提取,分类和回归已经融入到了一个网络,进一步提高了速度。


3 Faster R-CNN

Faster R-CNN是作者Ross Girshick继Fast R-CNN后的又一力作。同样使用vGG16作为网络的backbone,推理速度在GPU上达到5fps(包括候选区域的生成),准确率也有进一步的提升。在2015年的ILSVRC以及cOCO竞赛中获得多个项目的第一名。

在这里插入图片描述

3.1 算法步骤

  1. 将图像输入网络得到相应的特征图
  2. 使用RPN结构生成候选框,将RPN生成的候选框投影到特征图上获得相应的特征矩阵
  3. 将每个特征矩阵通过ROI pooling层缩放到7x7大小的特征图,接着将特征图展平通过一系列全连接层得到预测结果

实际上就是RPN+Fast R-CNN

在这里插入图片描述

所以,接下来只需要详细介绍一下RPN网络结构

3.2 RPN

在Faster R-CNN的训练过程中,RPN网络的训练是第一步。在这个阶段,使用ImageNet预训练的模型初始化RPN网络,并通过端到端的微调来优化网络参数,使其能够生成高质量的候选区域。在后续的训练步骤中,RPN网络和Fast R-CNN网络会共享卷积层,构成一个统一的网络,从而进一步提高目标检测的准确性和效率。

原论文给出的RPN网络的结构:

在这里插入图片描述

  • 该网络使用滑动窗口在feature map上面进行滑动,每次滑动时都会生成一系列候选框(即anchors)
  • 输出的通道数为256-d,再分别连接两个1x1conv,输出2k个score和4k个坐标,
  • 对于k个anchor,得出2k个预测概率和4k个边界框回归参数
  • 分类概率分别为前景和背景的概率,边界框回归参数还是Fast R-CNN提到的那四个
  • 向量的维度与backbone有关,这里使用ZF网络所以是256维,如果是VGG16,那就是512维

3.2.1 anchor

RPN(Region Proposal Network)网络中的anchor是Faster R-CNN中的一个核心概念。Anchor是在特征图上预先定义的一组矩形框,用于在图像中滑动并检测可能包含目标物体的区域。其主要目的是提供一种在图像中搜索目标物体的方式,通过不同尺度和长宽比的矩形框来覆盖图像中的不同区域

在RPN网络中,每个anchor都对应一个特征图上的点,这个点称为anchor的中心点。以这个中心点为基准,根据设定的尺度和长宽比,在特征图上生成一个矩形框,这个矩形框就是anchor。因此,anchor的数量和特征图的大小以及设定的尺度和长宽比有关。

在这里插入图片描述

RPN网络中的anchor具有两个重要的作用

  • 一是用于生成候选区域(proposals),即可能包含目标物体的区域;
  • 二是用于训练RPN网络,使其能够区分正样本和负样本,并对候选区域进行边框回归,调整其位置和大小。

anchor三种尺度(面积){1282,2562,5122}
anchor三种比例{ 1:1, 1:2, 2:1 }
每个位置在原图上都对应有3x3=9 anchor

在这里插入图片描述

对于一张1000x600x3的图像,大约有60x40x9(20k)个anchor,忽略跨越边界的anchor以后,剩下约6k个anchor。对于RPN生成的候选框之间存在大量重叠,基于候选框的cls得分,采用非极大值抑制,IoU设为0.7,这样每张图片只剩2k个候选框。

在这里插入图片描述

3.2.2 IOU

在训练阶段,RPN网络会为每个anchor生成一个二分类标签(正样本或负样本),以及一个边框回归值。正样本是指与真实目标边界框(ground-truth box)重叠程度较高的anchor,而负样本则是指与真实目标边界框重叠程度较低的anchor。

在这里插入图片描述

通过不断优化网络参数,RPN网络可以逐渐学习到如何区分正样本和负样本,并对候选区域进行准确的边框回归。

在这里插入图片描述
对于如何确定正负样本,原论文给出了这样的定义:

  • 首先,与ground-truth的交并比大于0.7的anchor为正样本
  • 其次,如果所有ground-truth与anchor的交并比都小于0.7,选择与ground-truth有最大交并比的anchor作为正样本
  • 最后,选择与ground-truth的交并比小于0.3的anchor为负样本

3.2.3 损失函数

原论文中给出的损失函数:
在这里插入图片描述

  • p i p_i pi表示第i个anchor预测为真实标签的概率
  • p i ∗ p_i^* pi当为正样本时为1,当为负样本时为0
  • t i t_i ti表示预测第i个anchor的边界框回归参数
  • t i ∗ t_i^* ti表示第i个anchor对应的GT Box
  • N c l s N_{cls} Ncls表示一个mini-batch中的所有样本数量256
  • N r e g N_{reg} Nreg表示anchor位置的个数(不是anchor个数)约2400

分类损失

分类损失在原论文中给出的是一个softmax cross entropy

L c l s = − log ⁡ ( p i ) L_{cls}=-\log (p_i) Lcls=log(pi)

  • p i p_i pi表示第i个anchor预测为真实标签的概率

边界框回归损失

这一部分与Fast R-CNN的边界框回归损失是一样的

论文中给出的是smooth L1损失

L reg  ( t i , t i ∗ ) = ∑ i smooth ⁡ L 1 ( t i − t i ∗ ) t i = [ t x , t y , t w , t h ] t i ∗ = [ t x ∗ , t y ∗ , t w ∗ , t h ∗ ] \begin{array}{l} L_{\text {reg }}\left(t_{i}, t_{i}^{*}\right)=\sum_{i} \operatorname{smooth}_{L_{1}}\left(t_{i}-t_{i}^{*}\right) \\ t_{i}=\left[t_{x}, t_{y}, t_{w}, t_{h}\right] \quad t_{i}^{*}=\left[t_{x}^{*}, t_{y}^{*}, t_{w}^{*}, t_{h}^{*}\right] \end{array} Lreg (ti,ti)=ismoothL1(titi)ti=[tx,ty,tw,th]ti=[tx,ty,tw,th]
smooth ⁡ L 1 ( x ) = { 0.5 x 2 if  ∣ x ∣ < 1 ∣ x ∣ − 0.5 otherwise  \operatorname{smooth}_{L_{1}}(x)=\left\{\begin{array}{ll} 0.5 x^{2} & \text { if }|x|<1 \\ |x|-0.5 & \text { otherwise } \end{array}\right. smoothL1(x)={0.5x2x0.5 if x<1 otherwise 

在这里插入图片描述

  • p i ∗ p_i^* pi当为正样本时为1,当为负样本时为0
  • t i t_i ti表示预测第i个anchor的边界框回归参数
  • t i ∗ t_i^* ti表示第i个anchor对应的GT Box

3.3 Faster R-CNN的训练

现在的很多地方都是直接采用RPN Loss+ Fast R-CNN Loss的联合训练方法

原始的训练方法是这样的:

  1. 利用ImageNet预训练分类模型初始化前置卷积网络层参数,并开始单独训练RPN网络参数;
  2. 固定RPN网络独有的卷积层以及全连接层参数,再利用lmageNet预训练分类模型初始化前置卷积网络参数,并利用RPN网络生成的目标建议框去训练Fast RCNN网络参数。
  3. 固定利用Fast RCNN训练好的前置卷积网络层参数,去微调RPN网络独有的卷积层以及全连接层参数。
  4. 同样保持固定前置卷积网络层参数,去微调Fast RCNN网络的全连接层参数。最后RPN网络与Fast RCNN网络共享前置卷积网络层参数,构成一个统一网络。

3.4 算法总结

在这里插入图片描述
在Faster R-CNN中,这四个部分都融合到了一个网络当中,实现了端对端的训练过程

这篇关于【深度学习 目标检测】R-CNN系列算法全面概述(一文搞懂R-CNN、Fast R-CNN、Faster R-CNN的来龙去脉)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/704542

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖