二次曲面拟合计算点云法曲率、主曲率以及平均曲率(手写版)

2024-02-12 01:30

本文主要是介绍二次曲面拟合计算点云法曲率、主曲率以及平均曲率(手写版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、相关原理及介绍

二、计算流程

三、实现代码

四、最终结果


参考文献:[1]周煜,张万兵,杜发荣等.散乱点云数据的曲率精简算法[J].北京理工大学学报,2010,30(07):785-789.DOI:10.15918/j.tbit1001-0645.2010.07.021.

                  [2]蔡志敏,王晏民,黄明.基于KD树散乱点云数据的Guass平均曲率精简算法[J].测绘通报,2013(S1):44-46.

一、相关原理及介绍

        从微分几何的角度来看,曲面曲率较高的区域,应该有较多的采样点表示,相反则应该由较少的采样点表示,曲率反映了曲面的基本特性。点云曲率特征是指在三维空间中,对于点云数据集中的每个点,通过计算其周围的几何形状来确定该点的曲率特征,曲率特征是点云数据集中非常重要的特征之一,它可以应用于点云中的分类、分割、配准、特征提取等应用中。

        曲率特征可以分为平均曲率、高斯曲率以及主曲率。平均曲率作为微分几何中一个“外在的”弯曲测量标准,对一个曲面嵌入周围空间(比如二维曲面嵌入三维欧式空间)的曲率进行了区部描述。高斯曲率作为一个描述曲面的凹凸性质的量,当这个量变化程度较大的时候表面曲面内部变化也比较大,这就表明曲面的光滑程度越低。点云中任意一点都存在某曲面 f=r(x,y,z) 逼近该点的邻域点云,一点处的曲率可用该点及其邻域点拟合的局部曲面曲率来表征。通过最小二乘拟合,可以用二次曲面来表征局部区域,计算每点处的主曲率 k{_{1}}k_{2},平均曲率H 及高斯曲率 K

二、计算流程

   设点云中某一点P_{i}K邻域点集为Q,通过邻域点建立二次曲面参数方程:

r(u,v)=\sum_{i,j=0}^{2}q_{i,j}u^{i}v^{j}                (1)

       令:

   a=[a_{00} a_{01} a_{02} a_{10} a_{11} a_{12} a_{20} a_{21} a_{22}]     b=[b_{00} b_{01} b_{02} b_{10} b_{11} b_{12} b_{20} b_{21} b_{22}]   

                        c=[c_{00} c_{01} c_{02} c_{10} c_{11} c_{12} c_{20} c_{21} c_{22}]

w=[{u^{0}}{v^{0}}\, \, {u^{0}}{v^{1}} \, \, {u^{0}}{v^{2}} \, \, {u^{1}}{v^{0}} \, \, {u^{1}}{v^{1}} \, \, {u^{1}}{v^{2}} \, \, {u^{2}}{v^{0}} \, \, {u^{2}}{v^{1}}\, \, {u^{2}}{v^{2}}]Q=[a,b,c]        (2)

式(1)可改写成:r(u,v)=[x(u,v) \, \, y(u,v)\, \, z(u,v)]=[w^{T}a \, \,w^{T}b \, \,w^{T}c]     (3)

        引入两个矩阵:

B=\begin{bmatrix} x_{0} & y_{0} &z_{0} \\ x_{1}&y_{1} &z_{1} \\ ... &... &... \\ x_{k}&y_{k} & z_{k} \end{bmatrix}W=\begin{bmatrix} W_{0}^{T} \\ W_{1}^{T} \\ ... \\ W_{k}^{T} \end{bmatrix}                                                                         (4)

测点P_{i}的坐标为P(x_{0}\, \, y_{0}\, \,z_{0}),选择邻域点数大于8,则逼近曲面和数据点的误差函数为:

\Omega =WQ-B                                                                                                        (5)

运用最小二乘法,推到出系数矩阵Q为:

Q=(W^{T}W)^{-1}W^{T}B                                                                                            (6)

从而求出曲面r(u,v)的偏导数r_{u}\; r_{v}\; r_{uu}\; r_{uv}\; r_{vv},曲面的单位法矢n为:

n=\frac{r_{u} \times r_{v}}{|r_{u} \times r_{v}|}                                                                                                                    (7)

曲面的第一、第二基本量为:

E= r_{u}^{2},\; F=r_{u} r_{v},\; G=r^{2}

L= nr_{uu},\; M=nr_{uv},\; N=nr_{vv}                                                                             (8)

则,

平均曲率为:

H=\frac{EN-2FM+GL}{2(EG-F^{2})}

高斯曲率为:

K=\frac{LN-M^{2}}{EG-F^{2}}

主曲率为:

k_{1},k_{2}=H\pm \sqrt{H^{2}-K}

三、实现代码

#include <iostream>
#include <pcl/io/pcd_io.h> 
#include <pcl/point_types.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/features/boundary.h>
#include <pcl/filters/normal_space.h>
#include <pcl/features/normal_3d.h>
#include <pcl/filters/radius_outlier_removal.h>
#include <vector>
#include <math.h>
#include <pcl/common/eigen.h>
#include <pcl/point_cloud.h>
#include <pcl/features/principal_curvatures.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <boost/thread/thread.hpp>using namespace std;
using namespace Eigen;//曲面拟合计算点云曲率
void surfacefitting(pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr& curvacloud, int k_neborradius, vector<double>& curvature_thereshold)
{//Mean_curvature.resize(cloud->size(), 1);//初始化矩阵 cloud->size * 1;//Gauss_curvature.resize(cloud->size(), 1);Matrix<double, 6, 6>Coefficient_matrix; //求解方程组系数矩阵Matrix<double, 6, 6>Inverse_Coefficient_matrix;		//系数矩阵的逆矩阵Matrix<double, 6, 1>Value_matrix;					//方程组右值矩阵pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;kdtree.setInputCloud(cloud);vector<int> pointIdRadiusSearch;             //点号vector<float> pointRadiusSquaredDistance;	 //距离for (int i = 0; i < cloud->points.size(); i++){kdtree.nearestKSearch(cloud->points[i], k_neborradius, pointIdRadiusSearch, pointRadiusSquaredDistance);double Target_x = 0, Target_y = 0, Target_z = 0;//数据点的坐标值Coefficient_matrix.setZero();					//初始化矩阵元素全为0Inverse_Coefficient_matrix.setZero();Value_matrix.setZero();double a = 0, b = 0, c = 0, d = 0, e = 0, f = 0;//二次曲面方程系数double u = 0, v = 0;							//二次曲面参数方程参数double E = 0, G = 0, F = 0, L = 0, M = 0, N = 0;//曲面第一、第二基本量Target_x = cloud->points[i].x;Target_y = cloud->points[i].y;Target_z = cloud->points[i].z;double Meancurvature = 0, Gausscurvature = 0;	//平均曲率、高斯曲率//遍历数据点i的邻域点for (int j = 0; j < pointIdRadiusSearch.size(); j++){Coefficient_matrix(0, 0) += (cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].x);Coefficient_matrix(0, 1) += (cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].y);Coefficient_matrix(0, 2) += (cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].y * cloud->points[pointIdRadiusSearch[j]].y);Coefficient_matrix(0, 3) += (cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].x);Coefficient_matrix(0, 4) += (cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].y);Coefficient_matrix(0, 5) += (cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].x);Coefficient_matrix(1, 1) += (cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].y * cloud->points[pointIdRadiusSearch[j]].y);Coefficient_matrix(1, 2) += (cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].y * cloud->points[pointIdRadiusSearch[j]].y * cloud->points[pointIdRadiusSearch[j]].y);Coefficient_matrix(1, 3) += (cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].y);Coefficient_matrix(1, 4) += (cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].y * cloud->points[pointIdRadiusSearch[j]].y);Coefficient_matrix(1, 5) += (cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].y);Coefficient_matrix(2, 2) += (cloud->points[pointIdRadiusSearch[j]].y * cloud->points[pointIdRadiusSearch[j]].y * cloud->points[pointIdRadiusSearch[j]].y * cloud->points[pointIdRadiusSearch[j]].y);Coefficient_matrix(2, 3) += (cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].y * cloud->points[pointIdRadiusSearch[j]].y);Coefficient_matrix(2, 4) += (cloud->points[pointIdRadiusSearch[j]].y * cloud->points[pointIdRadiusSearch[j]].y * cloud->points[pointIdRadiusSearch[j]].y);Coefficient_matrix(2, 5) += (cloud->points[pointIdRadiusSearch[j]].y * cloud->points[pointIdRadiusSearch[j]].y);Coefficient_matrix(3, 3) += (cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].x);Coefficient_matrix(3, 4) += (cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].y);Coefficient_matrix(3, 5) += (cloud->points[pointIdRadiusSearch[j]].x);Coefficient_matrix(4, 4) += (cloud->points[pointIdRadiusSearch[j]].y * cloud->points[pointIdRadiusSearch[j]].y);Coefficient_matrix(4, 5) += (cloud->points[pointIdRadiusSearch[j]].y);Coefficient_matrix(5, 5) += 1;Value_matrix(0, 0) += (cloud->points[pointIdRadiusSearch[j]].z * cloud->points[pointIdRadiusSearch[j]].x * cloud->points[pointIdRadiusSearch[j]].x);Value_matrix(1, 0) += (cloud->points[pointIdRadiusSearch[j]].z * cloud->points[pointIdRadiusSearch[j]].y * cloud->points[pointIdRadiusSearch[j]].x);Value_matrix(2, 0) += (cloud->points[pointIdRadiusSearch[j]].z * cloud->points[pointIdRadiusSearch[j]].y * cloud->points[pointIdRadiusSearch[j]].y);Value_matrix(3, 0) += (cloud->points[pointIdRadiusSearch[j]].z * cloud->points[pointIdRadiusSearch[j]].x);Value_matrix(4, 0) += (cloud->points[pointIdRadiusSearch[j]].z * cloud->points[pointIdRadiusSearch[j]].y);Value_matrix(5, 0) += (cloud->points[pointIdRadiusSearch[j]].z);}Coefficient_matrix(0, 0) += Target_x * Target_x * Target_x * Target_x;Coefficient_matrix(0, 1) += Target_x * Target_x * Target_x * Target_y;Coefficient_matrix(0, 2) += Target_x * Target_x * Target_y * Target_y;Coefficient_matrix(0, 3) += Target_x * Target_x * Target_x;Coefficient_matrix(0, 4) += Target_x * Target_x * Target_y;Coefficient_matrix(0, 5) += Target_x * Target_x;Coefficient_matrix(1, 1) += Target_x * Target_x * Target_y * Target_y;Coefficient_matrix(1, 2) += Target_x * Target_y * Target_y * Target_y;Coefficient_matrix(1, 3) += Target_x * Target_x * Target_y;Coefficient_matrix(1, 4) += Target_x * Target_y * Target_y;Coefficient_matrix(1, 5) += Target_x * Target_y;Coefficient_matrix(2, 2) += Target_y * Target_y * Target_y * Target_y;Coefficient_matrix(2, 3) += Target_x * Target_y * Target_y;Coefficient_matrix(2, 4) += Target_y * Target_y * Target_y;Coefficient_matrix(2, 5) += Target_y * Target_y;Coefficient_matrix(3, 3) += Target_x * Target_x;Coefficient_matrix(3, 4) += Target_x * Target_y;Coefficient_matrix(3, 5) += Target_x;Coefficient_matrix(4, 4) += Target_y * Target_y;Coefficient_matrix(4, 5) += Target_y;Coefficient_matrix(5, 5) += 1;Value_matrix(0, 0) += Target_x * Target_x * Target_z;Value_matrix(1, 0) += Target_z * Target_x * Target_y;Value_matrix(2, 0) += Target_z * Target_y * Target_y;Value_matrix(3, 0) += Target_z * Target_x;Value_matrix(4, 0) += Target_z * Target_y;Value_matrix(5, 0) += Target_z;Coefficient_matrix(1, 0) = Coefficient_matrix(0, 1);Coefficient_matrix(2, 0) = Coefficient_matrix(0, 2);Coefficient_matrix(2, 1) = Coefficient_matrix(1, 2);Coefficient_matrix(3, 0) = Coefficient_matrix(0, 3);Coefficient_matrix(3, 1) = Coefficient_matrix(1, 3);Coefficient_matrix(3, 2) = Coefficient_matrix(2, 3);Coefficient_matrix(4, 0) = Coefficient_matrix(0, 4);Coefficient_matrix(4, 1) = Coefficient_matrix(1, 4);Coefficient_matrix(4, 2) = Coefficient_matrix(2, 4);Coefficient_matrix(4, 3) = Coefficient_matrix(3, 4);Coefficient_matrix(5, 0) = Coefficient_matrix(0, 5);Coefficient_matrix(5, 1) = Coefficient_matrix(1, 5);Coefficient_matrix(5, 2) = Coefficient_matrix(2, 5);Coefficient_matrix(5, 3) = Coefficient_matrix(3, 5);Coefficient_matrix(5, 4) = Coefficient_matrix(4, 5);Inverse_Coefficient_matrix = Coefficient_matrix.inverse();for (int l = 0; l < 6; ++l){a += Inverse_Coefficient_matrix(0, l) * Value_matrix(l, 0);}for (int l = 0; l < 6; ++l){b += Inverse_Coefficient_matrix(1, l) * Value_matrix(l, 0);}for (int l = 0; l < 6; ++l){c += Inverse_Coefficient_matrix(2, l) * Value_matrix(l, 0);}for (int l = 0; l < 6; ++l){d += Inverse_Coefficient_matrix(3, l) * Value_matrix(l, 0);}for (int l = 0; l < 6; ++l){e += Inverse_Coefficient_matrix(4, l) * Value_matrix(l, 0);}for (int l = 0; l < 6; ++l){f += Inverse_Coefficient_matrix(5, l) * Value_matrix(l, 0);}//根据所求曲面方程的系数计算曲面第一第二基本量u = 2 * a * cloud->points[i].x + b * cloud->points[i].y + d;v = 2 * c * cloud->points[i].y + b * cloud->points[i].x + e;E = 1 + u * u;F = u * v;G = 1 + v * v;double u_v = sqrt(1 + u * u + v * v);L = (2 * a) / u_v;M = b / u_v;N = (2 * c) / u_v;//Gauss_curvatureGausscurvature = (L * N - M * M) / (E * G - F * F);//Mean_curvatureMeancurvature = (E * N - 2 * F * M + G * L) / (2 * E * G - 2 * F * F);curvature_thereshold.push_back(abs(Meancurvature));cout << "The " << i << " point, Gauss_curvature = " << Gausscurvature << "Mean_curvature = " << Meancurvature << endl;}
}int main(int argc, char** argv)
{pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr cloudout(new pcl::PointCloud<pcl::PointXYZ>);pcl::io::loadPCDFile<pcl::PointXYZ>("bunny.pcd", *cloud);vector<double> Meancurvature;surfacefitting(cloud, cloudout, 10, Meancurvature);vector<double> curvatureTem = Meancurvature;sort(curvatureTem.begin(), curvatureTem.end());int radio = Meancurvature.size() * 0.8;  //控制提取比列cout << radio;for (int i = 0; i < cloud->size(); i++){if (Meancurvature[i] > curvatureTem[radio]){pcl::PointXYZ pt;pt.x = cloud->points[i].x;pt.y = cloud->points[i].y;pt.z = cloud->points[i].z;cloudout->push_back(pt);}}pcl::io::savePCDFile("extract.pcd", *cloudout);boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("Point Cloud visual"));int showBefore = 0;int showAfter = 1;viewer->createViewPort(0, 0, 0.5, 1, showBefore);viewer->createViewPort(0.5, 0, 1, 1, showAfter);viewer->setBackgroundColor(0, 0, 0, showBefore);viewer->setBackgroundColor(0.05, 0, 0, showAfter);//原始点云pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> src_h(cloud, 0, 255, 0);//输出点云pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> after_sac(cloudout, 0, 0, 255);viewer->setBackgroundColor(0, 0, 0);viewer->addPointCloud(cloud, src_h, "source cloud", showBefore);viewer->addPointCloud(cloudout, after_sac, "target cloud1", showAfter);while (!viewer->wasStopped()){viewer->spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(10000));}}

四、最终结果

这篇关于二次曲面拟合计算点云法曲率、主曲率以及平均曲率(手写版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701323

相关文章

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

计算数组的斜率,偏移,R2

模拟Excel中的R2的计算。         public bool fnCheckRear_R2(List<double[]> lRear, int iMinRear, int iMaxRear, ref double dR2)         {             bool bResult = true;             int n = 0;             dou

GPU 计算 CMPS224 2021 学习笔记 02

并行类型 (1)任务并行 (2)数据并行 CPU & GPU CPU和GPU拥有相互独立的内存空间,需要在两者之间相互传输数据。 (1)分配GPU内存 (2)将CPU上的数据复制到GPU上 (3)在GPU上对数据进行计算操作 (4)将计算结果从GPU复制到CPU上 (5)释放GPU内存 CUDA内存管理API (1)分配内存 cudaErro