数据分析实例1(英文报告)--预测未来收入--SAS 逻辑回归--1994年美国人口普查数据

本文主要是介绍数据分析实例1(英文报告)--预测未来收入--SAS 逻辑回归--1994年美国人口普查数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Prediction of Future Income by Using Logistic Regression

Matthew LaFrance, Yu Zhang

 

1 Introduction

Many factors could influence a person’s annual income, for example, age, gender, race, level of education, marriage status, nationality, etc. The authors tried to fit four models of influential factors that based on a census dataset and to find a precise prediction of annual income.

The dataset was found at the UCI Machine Learning Repository. The data consists of 48,844 observations from a 1994 U.S. Census. The target variable, “Salary”, has two levels: >50k and <=50k. There are 8 categorical features and 5
numeric features consisting of demographic, educational, and occupational information. Table 1 is the variables in SAS version.
 

Table 1 Variables in the Income Dataset
在这里插入图片描述
The target variable “Salary” is notably unbalanced (in table 2). As a result, we noted that using raw accuracy as a success metric could potentially be misleading because a model that classifies all observations as <=50k would achieve roughly 76% accuracy.
 
Table 2 Salary Overview
在这里插入图片描述

2 Data Preprocessing

2.1 Missing Values

3,622 observations contained missing values primarily in the “occupation” column. Because the occupation column had many factor levels, we decided many imputation methods wouldn’t retain enough information to justify the increase in bias, so we decided to take only complete cases. As a result, our conclusions may be biased, and we assume that the deleted observations had missing values at random. For future work, it may be worthwhile to explore other methods of handling the missing data. After deletion, the final dataset had 45,222 observations.
 

2.2 Multicollinearity Checks

None of our numeric features showed strong correlations between each other (see table 3). As a result, we were not particularly concerned about multicollinearity.
 

Table 3 The Result of Correlation Checks
在这里插入图片描述

2.3 Exploratory Data Analysis and Feature Engineering

In our initial looks at the data, we were able to make several noteworthy observations which will be detailed below by variables and summarized at the end.

2.3.1 Capital Gains and Capital Losses
Figure 1 Overview of Capital Gains
Figure 1 Overview of Capital Gains
在这里插入图片描述
Figure 2 Overview of Capital Losses
 

Regarding the capital gains and loss variables, it is worth noting that most individuals in our dataset do not have any investments (see Figure 1 and Figure 2).

2.3.2 Native Country
As expected, most observations are U.S. natives (see Figure 3). The native country variable consists of many factor levels. In order to avoid having too many dummy variables later on, we decided it would be necessary to rebin this feature into a “0, and 1 ” indicator variable of being a native-born citizen.
在这里插入图片描述
Figure 3 Overview of Native Countries
 

2.3.3 Marital Status
In looking into the marital status feature, we noticed several different levels all representing married (see Figure 4). We decided to combine all these levels into one level, “married”, for more convenient interpretation. Additionally, it was worth noting that married individuals appear to more consistently make greater than 50k.

这篇关于数据分析实例1(英文报告)--预测未来收入--SAS 逻辑回归--1994年美国人口普查数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/700653

相关文章

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

JSONArray在Java中的应用操作实例

《JSONArray在Java中的应用操作实例》JSONArray是org.json库用于处理JSON数组的类,可将Java对象(Map/List)转换为JSON格式,提供增删改查等操作,适用于前后端... 目录1. jsONArray定义与功能1.1 JSONArray概念阐释1.1.1 什么是JSONA

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

java向微信服务号发送消息的完整步骤实例

《java向微信服务号发送消息的完整步骤实例》:本文主要介绍java向微信服务号发送消息的相关资料,包括申请测试号获取appID/appsecret、关注公众号获取openID、配置消息模板及代码... 目录步骤1. 申请测试系统2. 公众号账号信息3. 关注测试号二维码4. 消息模板接口5. Java测试