#单调队列,动态规划,斜率优化#hdu 3507 Print Article

2024-02-11 06:08

本文主要是介绍#单调队列,动态规划,斜率优化#hdu 3507 Print Article,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

一篇文章在打印k个需花费
这里写图片描述
m是常数,问最少花费多少就可以打完一篇文章


分析

对于 x 1 &lt; x x1&lt;x x1<x and x 2 &lt; x x2&lt;x x2<x
可得 d p [ x ] = d p [ x 1 ] + ( s u m [ x ] − s u m [ x 1 − 1 ] ) 2 + m dp[x]=dp[x1]+(sum[x]-sum[x1-1])^2+m dp[x]=dp[x1]+(sum[x]sum[x11])2+m
d p [ x ] = d p [ x 2 ] + ( s u m [ x ] − s u m [ x 2 − 1 ] ) 2 + m dp[x]=dp[x2]+(sum[x]-sum[x2-1])^2+m dp[x]=dp[x2]+(sum[x]sum[x21])2+m
但是 O ( n 2 ) O(n^2) O(n2)会超时
x 1 &lt; x 2 x1&lt;x2 x1<x2 and d p ( x 1 ) &lt; d p ( x 2 ) dp(x1)&lt;dp(x2) dp(x1)<dp(x2)
变形可得
d p [ x 2 ] + s u m [ x 2 − 1 ] 2 − d p [ x 1 ] − s u m [ x 1 − 1 ] 2 2 ( s u m [ x 2 − 1 ] − s u m [ x 1 − 1 ] ) &lt; s u m [ x ] \dfrac{dp[x2]+sum[x2-1]^2-dp[x1]-sum[x1-1]^2}{2(sum[x2-1]-sum[x1-1])}&lt;sum[x] 2(sum[x21]sum[x11])dp[x2]+sum[x21]2dp[x1]sum[x11]2<sum[x]
这里写图片描述
所以如果ANSWER(BC)<=sum[x],证明B点劣于C点,可以去掉B点。否则ANSWER(BC)>sum[x],如果ANSWER(AB)>=ANSWER(BC),则有ANSWER(AB)>sum[x],证明A点优于B点,可去掉B点。所以单调队列维护下凸壳


代码

#include <cstdio>
using namespace std;
typedef unsigned long long ull;
int n,m,q[500001],head,tail; ull sum[500001],f[500001];
ull in(){ull ans=0; char c=getchar();while (c<48||c>57) c=getchar();while (c>47&&c<58) ans=ans*10+c-48,c=getchar();return ans;
}
ull print(ull ans){if (ans>9) print(ans/10); putchar(ans%10+48);}
ull up(int i,int j){return f[i]+sum[i]*sum[i]-f[j]-sum[j]*sum[j];}//分子
ull down(int i,int j){return (sum[i]-sum[j])<<1;}//分母
ull dp(int i,int j){return f[j]+(sum[i]-sum[j])*(sum[i]-sum[j])+m;}//dp的答案
int main(){while (scanf("%d%d",&n,&m)==2){f[0]=q[head=tail=1]=0;for (register int i=1;i<=n;i++){sum[i]=sum[i-1]+in();while (head<tail&&up(q[head+1],q[head])<=sum[i]*down(q[head+1],q[head])) head++;f[i]=dp(i,q[head]);while (head<tail&&up(i,q[tail])*down(q[tail],q[tail-1])<=up(q[tail],q[tail-1])*down(i,q[tail])) tail--;//答案更优q[++tail]=i;} print(f[n]); putchar('\n');}return 0;
}

这篇关于#单调队列,动态规划,斜率优化#hdu 3507 Print Article的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/699010

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

浅谈MySQL的容量规划

《浅谈MySQL的容量规划》进行MySQL的容量规划是确保数据库能够在当前和未来的负载下顺利运行的重要步骤,容量规划包括评估当前资源使用情况、预测未来增长、调整配置和硬件资源等,感兴趣的可以了解一下... 目录一、评估当前资源使用情况1.1 磁盘空间使用1.2 内存使用1.3 CPU使用1.4 网络带宽二、

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer