#数论,组合,容斥原理,lucas定理,乘法逆元#洛谷 CF451E Devu and Flowers

本文主要是介绍#数论,组合,容斥原理,lucas定理,乘法逆元#洛谷 CF451E Devu and Flowers,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

n n n种颜色,每种颜色有 a i a_i ai枝花,现挑出 m m m朵,使没有颜色完全相同的方案


分析

可以发现,这道题是求多重集的组合数,根据容斥原理也就是
C k + r − 1 k − 1 − ∑ i = 1 k C k + r − n i − 2 k − 1 + ∑ 1 ≤ i &lt; j ≤ k C k + r − n i − n j − 3 k − 1 − ⋯ + ( − 1 ) k C k + r − ∑ i = 1 k n i − ( k + 1 ) C_{k+r-1}^{k-1}-\sum_{i=1}^kC_{k+r-n_i-2}^{k-1}+\sum_{1\leq i&lt;j\leq k}C^{k-1}_{k+r-n_i-n_j-3}-\cdots+(-1)^kC_{k+r-\sum_{i=1}^kn_i-(k+1)} Ck+r1k1i=1kCk+rni2k1+1i<jkCk+rninj3k1+(1)kCk+ri=1kni(k+1)
关于优化的方面,因为选择的数量特别大,所以说需要用二进制优化,还是比较简单去想的,对于判断越界可以用lucas定理@my blog古代猪文,关于组合数的求法可以用乘法逆元


代码

#include <cstdio>
#define rr register
#define mod 1000000007
long long m,a[20],ans; int n,inv[20];
inline int ksm(int x,int y){//快速幂int ans=1;while (y){if (y&1) ans=(long long)ans*x%mod;x=(long long)x*x%mod; y>>=1;}return ans;
}
inline int c(long long n,int m){if (n<0||m<0||n<m) return 0;//不可能存在答案if (!n||!m) return 1;//特判int ans=1;for (rr int i=0;i<m;++i)ans=(long long)ans*(n-i)%mod*inv[i]%mod;//求组合数return ans;
}
int main(){scanf("%d%lld",&n,&m);for (rr int i=0;i<n;++i) scanf("%lld",&a[i]),inv[i]=ksm(i+1,mod-2);//乘法逆元for (rr int x=0;x<1<<n;++x){if (!x) ans=(ans+c((n+m-1)%mod,n-1))%mod;//不考虑重复的状况else{long long t=n+m; int p=0;for (rr int i=0;i<n;++i)if (x>>i&1) p++,t-=a[i];//记录1的个数t-=p+1;if (p&1) ans=(ans-c(t%mod,n-1))%mod;//求答案else ans=(ans+c(t%mod,n-1))%mod;//可能要加回去(容斥定理)}}printf("%lld",(ans+mod)%mod);//算下来可能会出现负数return 0;
}

这篇关于#数论,组合,容斥原理,lucas定理,乘法逆元#洛谷 CF451E Devu and Flowers的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/698991

相关文章

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4828(卡特兰数+逆元)

这题的前几个数据分别为1,2,5,14,32......................然后确定这是个卡特兰数列 下面来介绍下卡特兰数,它的递推式为f[i+1] = f[i]*(4*n - 6)/n,其中f[2] = f[3] =1;f[4] = 2;f[5] = 14;f[6] = 32.................................. 但是这题的n太大了,所以要用到逆元,

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

数论ZOJ 2562

题意:给定一个数N,求小于等于N的所有数当中,约数最多的一个数,如果存在多个这样的数,输出其中最大的一个。 分析:反素数定义:对于任何正整数x,其约数的个数记做g(x).例如g(1)=1,g(6)=4.如果某个正整数x满足:对于任意i(0<i<x),都有g(i)<g(x),则称x为反素数。 性质一:一个反素数的质因子必然是从2开始连续的质数。 性质二:p=2^t1*3^t2*5^t3*7

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu

hdu4059容斥原理

求1-n中与n互质的数的4次方之和 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWrit

POJ2247数论

p = 2^a*3^b*5^c*7^d 求形如上式的第n小的数。 import java.io.BufferedReader;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWriter;import java.math.BigInteger;import java.u