A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings论文笔记

本文主要是介绍A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings论文笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回看前几篇笔记发现我剪贴的公式显示很乱,虽然编辑时调整过了,但是不知道为什么显示的和编辑时的不一样,为方便大家的阅读,我开始尝试着采用markdown的形式写笔记,前几篇有时间的话再修改。

这篇论文阅读完,我依然有很多不懂的地方,对其操作不是很清晰,因为我没做过这方面的内容,且近期估计没时间学习其项目,所以记录理解的可能有误,希望大家带着思考阅读。
PS:感觉这篇文章的作者是这个方向的大神呢,引用里好多都是他自己的文章
原文下载链接
项目下载链接

摘要

  • 跨语种嵌入映射(cross-lingual embedding mappings)的核心思想:分别训练单个语种语料,再通过线性变换映射到shared space。
  • 方法整体分为监督的、半监督的和非监督的,监督和半监督都要依赖种子字典(seed dictionary),本文主要研究非监督的方法
  • 非监督方法主要有两种:对抗训练(adversarial training)和自学习(self-learning)
  • 对抗训练的缺点:依赖favorable conditions(如限制在相关的语种,类似维基百科的语料)
  • 自学习的缺点:初始化不好时,易陷入差的(poor)局部最优
  • 本文即使根据自学习的缺点提出了初始化的方法。
  • 提出方法的依据是:观察到不同语种中相同的词有相似的相似度分布,如图1所示:在这里插入图片描述
    Figure 1中的第一幅图是英文单词two的相似度分布,第二幅图是意大利语due(等同于two)的相似度分布,第三幅图是意大利语cane(等同于dog)的相似度分布。

本文算法

设X和Z是两种语言的embedding矩阵,所以他们的第 i t h ith ith X i ∗ X_{i*} Xi Z i ∗ Z_{i*} Zi表示他们语种中的第 i i i个词,我们的目标就是学习变换矩阵 W X {W_{X}} WX W Z {W_{Z}} WZ,所以映射embedding X W X {XW_{X}} XWX Z W Z {ZW_{Z}} ZWZ在相同的跨语种空间,同时,要在两个语种中构建一个字典即稀疏矩阵 D D D,如果目标语言中的第j个单词是源语言中第i个单词的翻译,则Dij = 1。
本文算法主要分四步:1)normalize embedding的预处理;2)完全非监督的初始化方案;3)鲁棒性强的self-learning步骤;4)最后微调通过对称re-weighting进一步improve mapping.

1 embedding normalization

这边具体不知道怎么做的,只能把翻译写下来了(也不知道翻的对不对):长度标准化嵌入,然后平均每个维度的中心,然后长度再次标准化它们。(原文:length normalizes the embeddings, then mean centers each dimension, and then length normalizes them again.)

2 完全非监督初始化

这里我就拷贝公式了,剩下的部分因为我也似懂非懂所以就简单写一下:mapping中的一个难点是X和Z并不对应,此处包含两方面,词不对应(反应到行),维度不对应(反应到列)。
本文的方法是首先通过 M X = X X T M_{X}=XX^{T} MX=XXT M Z = Z Z T M_{Z}=ZZ^{T} MZ=ZZT分别求其相似度矩阵,然后对每一行进行排序,然后在进行第一节的规范化操作;

3 Robust self-learning

这部分没看懂啊,大家还是认真看原文吧

4 Symmetric re-weighting

同上一节(羞愧)

这篇文章没仔细看,很多细节没看懂,所以记得也比较草率,之所以还这样记录下来是为了记录下其核心思想,等回顾时也许能用上。这篇写的很差,大家见谅啊~~~~

这篇关于A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings论文笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/695591

相关文章

Java利用poi实现word表格转excel

《Java利用poi实现word表格转excel》这篇文章主要为大家详细介绍了Java如何利用poi实现word表格转excel,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、每行对象类需要针对不同的表格进行对应的创建。package org.example.wordToEx

Python如何在Word中生成多种不同类型的图表

《Python如何在Word中生成多种不同类型的图表》Word文档中插入图表不仅能直观呈现数据,还能提升文档的可读性和专业性,本文将介绍如何使用Python在Word文档中创建和自定义各种图表,需要的... 目录在Word中创建柱形图在Word中创建条形图在Word中创建折线图在Word中创建饼图在Word

Python批量调整Word文档中的字体、段落间距及格式

《Python批量调整Word文档中的字体、段落间距及格式》这篇文章主要为大家详细介绍了如何使用Python的docx库来批量处理Word文档,包括设置首行缩进、字体、字号、行间距、段落对齐方式等,需... 目录关键代码一级标题设置  正文设置完整代码运行结果最近关于批处理格式的问题我查了很多资料,但是都没

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

基于Java实现模板填充Word

《基于Java实现模板填充Word》这篇文章主要为大家详细介绍了如何用Java实现按产品经理提供的Word模板填充数据,并以word或pdf形式导出,有需要的小伙伴可以参考一下... Java实现按模板填充wor编程d本文讲解的需求是:我们需要把数据库中的某些数据按照 产品经理提供的 word模板,把数据

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学