谷歌 DeepMind 联合斯坦福推出了主从式遥操作双臂机器人系统增强版ALOHA 2

本文主要是介绍谷歌 DeepMind 联合斯坦福推出了主从式遥操作双臂机器人系统增强版ALOHA 2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

谷歌 DeepMind 联合斯坦福推出了 ALOHA 的增强版本 ——ALOHA 2。与一代相比,ALOHA 2 具有更强的性能、人体工程学设计和稳健性,且成本还不到 20 万元人民币。并且,为了加速大规模双手操作的研究,ALOHA 2 相关的所有硬件设计全部开源了,并提供了详细的教程,以及具有系统识别功能的 ALOHA 2 MuJoCo 模型。谷歌 DeepMind 放出了相关论文《ALOHA 2: An Enhanced Low-Cost Hardware for Bimanual Teleoperation》。

论文地址:https://aloha-2.github.io/assets/aloha2.pdf

项目主页:https://aloha-2.github.io/

我们先来一睹升级后的 ALOHA 2 能做些什么,比如将不同的玩具放进三个不同的碗里。

玩杂耍,你扔我接。

图片

开可乐瓶并将可乐倒进别的杯子里、开酸奶盒。

图片

给熊猫玩偶戴上美瞳。

图片

更难以想象的是,它还能变身扒手,悄无声息拿走你的钱包,并给你放回去。

图片

简直绝了!ALOHA 2 显著提高了一代 ALOHA 的耐用性,从而能够在更复杂的任务上进行大规模数据收集。

相较于一代,ALOHA 2 都升级了些啥

为支持对复杂操作任务的研究,在 ALOHA 平台上扩大数据收集的规模成为目标之一,包括使用的机器人数量、每台机器人的数据收集小时数以及数据收集的多样性。这一扩展过程改变了相对于第一代 ALOHA 平台的要求和范围。

对于 ALOHA 2,除了在 ALOHA 平台的基础上建设,研究者还针对以下领域寻求进一步改进:

性能和任务范围:增强 ALOHA 性能的关键组件,包括夹持器和控制器,以实现更广泛的操控任务。

用户友好性和人体工学:为了优化大规模数据收集,优先考虑用户体验和舒适度,包括改进用户界面系统的响应性和人体工学设计。

稳健性:增加系统的稳健性,最大限度地减少因诊断和维修造成的停机时间。这就需要简化机械设计,并确保更大规模的机器人队伍在整体上易于维护。

根据上述目标,ALOHA 2 的具体改进如下:

夹持器:研究者为主/从机器人的夹持器设计了新的低摩擦轨道。对于主机器人,这改善了遥操作的人体工学和响应速度。对于随动机器人,这改善了延迟和夹持器的力量输出。此外,他们还升级了手指上的抓胶带材料,以提高耐用性和抓取小物体的能力。

重力补偿:研究者使用现成的组件创建了一个被动的重力补偿机制,与 ALOHA 原有的抓带材料系统相比,这提高了耐用性。

框架:研究者简化了围绕工作单元的框架,同时保持了相机安装点的刚性。这些变化为人机协作者和机器人互动的道具提供了空间。

相机:ALOHA 2 使用更小的英特尔 RealSense D405 相机和定制的 3D 打印相机支架,以减小跟随臂的占地面积,从而减少对操作任务的阻碍。这些摄像头还具有更大的视场角、深度、全局快门和更多的定制功能。

模拟:研究者在 MuJoCo Menagerie 中的 MuJoCo 模型中模拟了 ALOHA 2 机器人的精确规格,从而改进了数据收集、策略学习和模拟评估,以应对具有挑战性的操纵任务。

夹持器

为了使遥控操作更顺畅,并改善人体工程学,本次采用了低摩擦轨道设计,降低了机械复杂性,从而取代了 ALOHA 原有的剪刀导轨式机械手设计。

图片

研究者设计并制造了低摩擦随动机械手,取代了 ALOHA 最初的设计。较低的摩擦减少了领导机器人和跟随机器人夹持器之间感知的延迟,显著改善了远程操作期间的用户体验。

框架

研究者重新设计了支撑框架,并使用 20x20mm 铝型材将其制成。框架为领导机器人和重力补偿系统提供支撑,并为俯视摄像机和虫眼摄像机提供安装点。

在这里插入图片描述

与 ALOHA 相比,本次设计进行了简化,去掉了工作台与遥控操作员相对一侧的垂直框架。增加的空间使数据收集方式更加多样化。例如,人类协作者可以更轻松地站在工作区的对面与机器人互动,从而收集人机互动数据。此外,还可以在工作台前摆放较大的道具,让机器人与之互动。

在这里插入图片描述

模拟

研究者发布了用于 ALOHA 2 工作单元的 MuJoCo Menagerie 模型,它对于远程操作和模拟学习非常有用。

与之前发布的 ALOHA 模型相比,MuJoCo 的物理精度更高、视觉保真度更高,允许快速、直观、可扩展的模拟数据收集。

在这里插入图片描述

MuJoCo 模型渲染。

图片

模拟远程操作任务。

以下为使用 Google Scanned Objects Dataset 与 MuJoCo 模型进行远程操作的示例(1 倍速度):

图片

这篇关于谷歌 DeepMind 联合斯坦福推出了主从式遥操作双臂机器人系统增强版ALOHA 2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/693991

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

Python利用自带模块实现屏幕像素高效操作

《Python利用自带模块实现屏幕像素高效操作》这篇文章主要为大家详细介绍了Python如何利用自带模块实现屏幕像素高效操作,文中的示例代码讲解详,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、获取屏幕放缩比例2、获取屏幕指定坐标处像素颜色3、一个简单的使用案例4、总结1、获取屏幕放缩比例from

通过prometheus监控Tomcat运行状态的操作流程

《通过prometheus监控Tomcat运行状态的操作流程》文章介绍了如何安装和配置Tomcat,并使用Prometheus和TomcatExporter来监控Tomcat的运行状态,文章详细讲解了... 目录Tomcat安装配置以及prometheus监控Tomcat一. 安装并配置tomcat1、安装