大模型2024规模化场景涌现,加速云计算走出第二增长曲线

本文主要是介绍大模型2024规模化场景涌现,加速云计算走出第二增长曲线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导读:2024,大模型第一批规模化应用场景已出现。

如果说“百模大战”是2023年国内AI产业的关键词,那么2024年我们将正式迈进“应用为王”的新阶段。

不少业内观点认为,2024年“百模大战”将逐渐收敛甚至洗牌,而大模型在千行万业的应用将从小规模试水,逐渐走向规模化落地。

展望2024,哪些场景更有可能率先实现大模型的规模化应用?

如果将大模型的应用场景分为互联网和政企两大类,基于产业观察,「智能进化论」认为:

在互联网领域,搜索增强、多媒体内容生成(AIGC推理)、智能NPC、量化投研有望成为第一批规模化应用的场景;

在政企领域,政企AI算力调度平台、智能驾驶、销售预测、柔性制造、国产化AI大模型中心等场景走得更快,同时中小企业大模型体验版也有相当大的潜力。

透过大模型在TOP场景的落地,我们不妨追问,这些场景之间有什么共同之处吗?谁在推动大模型跨越规模化应用的奇点?

TOP场景盘点,大模型下一个杀手级应用在哪?

——大模型在互联网领域的规模化应用场景——

在互联网领域,2023年国内诞生了众多聊天机器人、文生文、文生图AI应用。其实,从搜索引擎、多媒体内容到游戏,中国领先的移动互联网生态与大模型的碰撞藏着无限可能,大模型下一个杀手级应用也许就会从中诞生。

  • 搜索增强

搜索增强/检索增强生成技术(RAG)已成为当前最火热的LLM应用方案,被认为能够有效解决知识的局限性和时效性、幻觉等大模型应用的核心痛点。

此前大模型的知识来自训练数据集,而对实时性、非公开的或离线的数据是无法获取到的。搜索增强能够让大模型与实时互联网信息和垂直专业知识库连接,极大拓展了大模型的应用范围。

比如,过去搜索引擎通过关键词检索的方式返回结果,用户还需要花费大量时间精力去筛选原始网页和内容,才能找到想要的信息。通过搜索增强,大模型可以带来更精准的搜索结果,让搜索引擎变成集知识的发现、处理、分析和重新组织为一身的个人智能助理。

搜索增强同时具备检索和生成两种能力。如果将互联网信息比作一座拥有海量知识的图书馆,搜索增强融合了图书管理员和作家两种角色。图书管理员首先能够精准理解用户意图,然后快速从海量知识库中找到最相关的内容,再由作家将内容生成一个清晰易懂的答案,交付给用户。

搜索增强应用范围极广,包括搜索引擎网站、各类垂直APP内的搜索功能、千行百业的智能客服、企业内部知识库构建等等。

  • 多媒体内容生成(AIGC推理)

麦肯锡数据显示,中国生成式AI市场2020~2025年复合增速将达到84% ,2025年中国市场将占全球市场规模的14%。

多媒体内容生成是普通人最有感知的AI场景,也是大模型最火热的应用领域之一。2023年,从AI孙燕姿到妙鸭相机,多个热门AI应用和现象都来自这一场景。AIGC也推动了影像、设计相关领域公司收入大涨。譬如根据2023年上半年财报,在AIGC推动下,美图公司以VIP订阅为主的影像和设计产品业务成为第一大收入,公司实现净利润同比增长320.4%。

多模态大模型提供的文生图、图生图、文生视频、文生3D、数字人生成等能力,能够快速、生成海量高质量创意内容,颠覆了内容产业的商业模式。此外,大模型结合AI增强、云渲染等技术,还能广泛应用于生成高分辨率图片和视频、噪点消除、老片修复和上色、高精度3D建模和3维重建等场景。

值得注意的是,2023年5月几名B站UP主基于开源模型推出的AI孙燕姿,通过AI歌手演绎翻唱歌曲获得了巨大关注度。这也说明大模型爆款应用,可能不一定来自大公司,也有可能来自初创企业甚至技术达人。

  • 智能NPC

传统游戏中,NPC就像工具人,只能按部就班运行早已设定好的指令。如果NPC变成一个个智能体,具备不同的思想、性格和记忆,游戏世界该有多么精彩?是不是有种《西部世界》的感觉?

在大模型加持下,智能NPC能够在与玩家的交互过程中不断进化,发展出独特的游戏剧情,推动整个游戏世界的自我发展,重塑玩家体验。

目前,Ubisoft、网易等头部游戏公司已经尝试应用智能NPC。2023年,Open AI收购了一家名为Global Illumination的游戏公司,看重的正是其用ChatGPT驱动每个NPC角色的能力。

更重要的是,智能NPC让人们看到大模型+游戏产业背后更大的想象力,未来游戏中的其他元素,会不会也逐渐向AI生成的方向发展?

  • 量化投研

量化投研是指金融机构通过分析大量金融和市场数据,预测市场走势与价格波动,从而提供投资策略和建议。然而金融市场瞬息万变,传统的投研工作面临信息爆炸、数据碎片化、预测准确率低、时效性差等挑战。

大模型投研工具成为金融行业提升投研效率的新解法。2023年已有多家金融科技平台推出大模型投研工具,让投研工作更高效更轻松。量化投研大模型可以通过分析市场行情、量价关系、研究报告、企业财报、舆情和热点等海量数据,为专业人士快速提供投资组合建议和风险管理策略。

——大模型在政企领域的规模化应用场景——

大模型在政企领域的热门应用场景在政企领域,那些率先实现规模化应用的场景将围绕政企客户、重点行业与中小企业展开。

比如,政企AI算力调度平台能够实现本地算力与云上算力的统一管理调度,国产化AI大模型中心为政企客户提供从芯片到平台应用全栈自主可控的基础设施。

在新能源汽车、新零售、新制造等产业,智能驾驶、销售预测、柔性制造是大模型的热门落地场景。

为降低中小企业使用大模型的资金、技术、人才门槛,中小企业大模型体验版可以让中小企业通过快速训练推理出适合自己的大模型,实现跨越式发展。

云计算,大模型走向规模化应用的必经之路

尽管上述场景分散在各行各业,但如果非要找出这些场景的共同点,它们背后都有同一个不可忽视的驱动力,那就是云计算。

观察最头部的大模型应用创新,从ChatGPT到MidJourney,不难发现一流的大模型初创公司都背靠强大的云厂商。

如今,大模型领域的竞争已经转化为“云+AI”的体系化技术竞争。尤其是当大模型步入规模化应用阶段,云计算已经成为AI大模型创新发展的土壤。换句话说,大模型在千行万业能不能用得好,关键在于云计算。

我们也是时候重新认识云计算对于AI的价值了。

首先,弹性、可靠、高效的云上算力支持

大模型是算力无底洞,此前业界曾预测OpenAI训练GPT-4可能使用了大约10000-25000张GPU,这背后离不开微软云上算力的支撑。而且,大模型不仅需要海量算力,还要求算力具备灵活、弹性、可靠、高效等特性,云计算可以给到最佳解决方案。

国内云上AI算力供给,不得不提到华为云。华为云在贵安、乌兰察布、芜湖3大AI云算力中心及30多分节点,能够为企业提供澎湃昇腾AI算力。目前,昇腾AI算力可实现千卡训练30天长稳率达到90%,训练作业故障自动恢复,非自动场景下恢复时长小于30分钟,为千行百业使用大模型提供了稳定可靠、高质量的云底座。

此外,云上AI算力的可用性也是中国AI企业面临的新挑战。面对美国商务部抛出的“云上AI算力禁令”,华为云提供了充沛的昇腾算力,大大降低了中国企业云上AI算力被卡脖子的风险。

其次,基于系统级优化能力,实现降本增效

大模型也是吞金兽。大模型要想取得突破,消耗的算力资源每3-4个月就要翻一番。不久前,马斯克称参与AI军备竞赛的企业每年需要在AI硬件上投入数十亿美元,才能保持竞争力。

云计算是解决大模型成本问题的必由之路。一方面,云计算可以通过容器或Serverless技术,能够极大提升资源的复用率,让客户无需为闲置资源付费。另一方面,近年来云计算还在不断产生大量细分领域技术创新,专门针对AI、大模型的降本增效而生。

以前面提到的搜索增强场景为例,要构建搜索大模型增强能力,需要海量数据和AI算力资源,资金和时间成本巨大。解决这些痛点必须靠云基础设施层面的系统性优化。比如,华为云SFS Turbo可以大幅提升数据加载、训练数据读取速度,而且故障备份恢复快,实现千亿大模型ckpt文件秒级保存,让企业省钱更省心。华为云ModelArts AI加速套件,通过AI训练组网、集合通信算子及训练框架优化,可实现6千卡集群并行训练性能领先业界30%。

在AIGC场景下,华为云针对该场景的算子优化,能将整体性能提升30%。在某客户案例中,将图像生成模型迁移到昇腾后,通过AIGC生成一张图片的时间从6.2秒减少到5.2秒,并且通过AI渲染加速可以提升渲染效率2-4倍,大幅降低了内容生成时间和成本。


第三、海量AI应用创新的平台

云服务商不仅是底层资源的提供者,也是创新服务的构建者。如今越来越多的云厂商在MaaS新商业模式下不断探索,将AI和大模型能力作为创新云服务对外赋能。

比如,高峰期智能NPC每天都要面临海量玩家的实时交互,这让智能NPC对实时交互的时延和推理算力弹性扩缩容要求非常高。华为云与网易伏羲进行联合创新,通过网易伏羲构AI多云平台与华为云昇腾AI云服务的适配,在算子层和框架层进行大量性能优化。满足了交互场景的秒级时延要求,让智能NPC做到“忙时不慌,闲时不废”,保障了各时段玩家的体验。

Cloud for AI,云厂商破局的新机会

AI已经成为云计算产业发展的第二增长曲线。

得益于AI技术的发展,全球云计算行业实现再次加速。Synergy Research数据显示,全球企业2023年四季度在云计算的总支出达740亿美元,环比增长56亿美元,环比增速创下历史新高。预计2023年全球云计算行业收入将达到2700亿美元。

Synergy分析师John Dinsdale表示:“云计算是一个规模很大的市场,需要付出很大努力才能获得进展,但人工智能已经做到了这点。”他认为,在AI的助力下,接下来云计算市场规模还会继续增长。

2023年,大模型与生成式AI的火爆,让一个大趋势日益明晰:未来,几乎所有应用都会接入AI/大模型能力,我们将迎来一个AI原生应用的时代。

大模型给千行万业带来了新的生产方式、交互方式、业务范式、商业模式,未来各个产业对AI的需求(包括大模型产业链、云上算力、生成式AI)一定是大规模增长,这也给云计算产业带来了新的增长点。

在这样的大趋势下,Cloud for AI不仅是云厂商的新机会,也是必答题。纵观全球头部云厂商,都在探索如何基于AI重塑云计算技术和服务体系,开辟出全新的服务场景和服务内容。

国际云厂商方面,微软是AI助力云业务腾飞的典型案例。在2024财年第二财季(截至2023年12月31日),微软智能云Azure和其他云业务实现营收同比增长30%。目前,在微软智能云的5.3万名客户中,有三分之一都是2023年新加入的。

在国内,华为云则是Cloud for AI的深度践行者。华为云提供了从昇腾AI云服务、盘古系列大模型以及一系列AI研发工具套件在内的完整AI全栈技术平台。可以预见的是,在Cloud for AI的时代,AI将成为华为云一张独特的名片。

过去,大模型高高在上,很难落地。在经过一番痛苦的摸索与实践后,人们才发现,大模型落地的解法不在大模型本身,而在Cloud for AI。当Cloud for AI已就绪,当第一批TOP场景诞生,大模型才能真正驶向规模化应用的广阔星空。

文中图片来自摄图网

END

本文为「智能进化论」原创作品。

这篇关于大模型2024规模化场景涌现,加速云计算走出第二增长曲线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/692620

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}