原文:Understanding Emergent Abilities of Language Models from the Loss Perspective 摘要 本文从预训练损失的角度重新审视语言模型的涌现能力,挑战了以往以模型大小或训练计算量为标准的观念。通过实验,作者发现预训练损失是预测下游任务性能的关键指标,不同规模的模型在相同预训练损失下展现相似性能。这一新视角为理解语言
1. Large Language Model(大型语言模型) Large Language Model(大型语言模型)是指具有大规模参数数量和处理能力的语言模型。这些模型通过深度学习技术训练,能够处理和生成自然语言文本。 大型语言模型在自然语言处理领域发挥着重要作用,它们能够理解和生成文本,执行语言相关的任务,如机器翻译、文本摘要、情感分析、对话系统等。这些模型的训练基于大量的文本数据集,使
LLMs:《A Survey of Large Language Models大语言模型综述》的翻译与解读(一)之序言(挑战+LM四阶段+LLM与PLM的三大区别)、概述(两个代表性扩展定律/涌现能力三种典型/六大关键技术+GPT系列技术演进)、资源(开源模型/闭源API+六类语料库+三种框架库) 导读:LLMs(LLM)是指具有数十亿甚至数百亿参数的 Transformer 语言模型,近
LLMs:《A Survey of Large Language Models大语言模型综述》的翻译与解读(一)之序言(挑战+LM四阶段+LLM与PLM的三大区别)、概述(两个代表性扩展定律/涌现能力三种典型/六大关键技术+GPT系列技术演进)、资源(开源模型/闭源API+六类语料库+三种框架库) 导读:LLMs(LLM)是指具有数十亿甚至数百亿参数的 Transformer 语言模型,近