【保姆级教程|YOLOv8改进】【6】快速涨点,SPD-Conv助力低分辨率与小目标检测

本文主要是介绍【保姆级教程|YOLOv8改进】【6】快速涨点,SPD-Conv助力低分辨率与小目标检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~

《------正文------》

前言

论文发表时间:2022.08.07

github地址:https://github.com/LabSAINT/SPD-Conv
paper地址:https://arxiv.org/pdf/2208.03641v1.pdf

在这里插入图片描述

文章提出了一个新的CNN构建模块称为SPD-Conv,用来替换每个步长卷转层和每个池化层(从而完全消除它们)。SPD-Conv由一个空间到深度(SPD)层和一个非步长卷积(Conv)层组成。本文详细介绍了如何在yolov8中引入SPD-Conv,助力助力低分辨率与小目标检测,并且使用修改后的yolov8进行目标检测训练与推理本文提供了所有源码免费供小伙伴们学习参考,需要的可以通过文末方式自行下载。

本文改进使用的ultralytics版本为:ultralytics == 8.0.227

目录

  • 前言
  • 1.SPD-Conv简介
    • 1.1 网络结构
    • 1.2 性能对比
  • 2.YOLOv8添加SPD-Conv
    • YOLOv8网络结构前后对比
    • 定义FasterNet相关类
    • 修改指定文件
  • 3.加载配置文件并训练
  • 4.模型推理
  • 【源码免费获取】
  • 结束语

1.SPD-Conv简介

在这里插入图片描述

摘要:卷积神经网络(CNN)在许多计算机视觉任务中取得了显著的成功,例如图像分类和目标检测。然而,它们的性能在图像分辨率低或对象较小的更艰难任务中会急剧下降。在本文中,我们指出这一问题源于现有CNN架构中一个有缺陷但常见的设计,即使用步长卷积和/或池化层,这导致了细微信息的丢失和较少有效特征表示的学习。为此,我们提出了一个新的CNN构建模块称为SPD-Conv,用来替换每个步长卷转层和每个池化层(从而完全消除它们)。SPD-Conv由一个空间到深度(SPD)层和一个非步长卷积(Conv)层组成,可以应用于大部分(如果不是全部的话)CNN架构。我们在两个最有代表性的计算机视觉任务下解释了这种新设计:目标检测和图像分类。然后,我们通过将SPD-Conv应用于YOLOv5和ResNet创建了新的CNN架构,并通过实验证明,我们的方法显著优于最先进的深度学习模型,尤其是在图像分辨率低和对象较小的更艰难任务上。

论文主要亮点如下:

  • 我们发现了现有CNN架构中一个有缺陷但常见的设计,并提出了一种新的构建模块,称为SPD-Conv,以取代旧的设计。SPD-Conv在不丢失可学习信息的情况下下采样特征图,彻底抛弃了如今广泛使用的带步长的卷积和池化操作。
  • SPD-Conv代表一种通用且统一的方法,可以很容易地应用于大部分(如果不是全部的话)基于深度学习的计算机视觉任务。
  • 使用两个最具代表性的计算机视觉任务,目标检测和图像分类,来评估SPD-Conv的性能。具体来说,我们构建了YOLOv5-SPD、ResNet18-SPD和ResNet50-SPD,并在COCO-2017、Tiny ImageNet和CIFAR-10数据集上与几种最先进的深度学习模型进行了比较。结果显示在AP和top-1精度上都有显著的性能提升,特别是在小物体和低分辨率图像上。

1.1 网络结构

在这里插入图片描述

1.2 性能对比

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2.YOLOv8添加SPD-Conv

YOLOv8网络结构前后对比

在这里插入图片描述

定义FasterNet相关类

ultralytics/nn/modules/block.py中添加如下代码块,为space_to_depth模块代码:
在这里插入图片描述

并在ultralytics/nn/modules/block.py中最上方添加如下代码:
在这里插入图片描述

修改指定文件

ultralytics/nn/modules/__init__.py文件中的添加如下代码:
在这里插入图片描述

ultralytics/nn/tasks.py 上方导入相应类名,并在parse_model解析函数中添加如下代码:
在这里插入图片描述

       elif m is space_to_depth:c2 = 4 * ch[f]

在这里插入图片描述

ultralytics/cfg/models/v8文件夹下新建yolov8-FasterNet.yaml文件,内容如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 1]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 1]]  # 1-P2/4- [-1, 1, space_to_depth, [1]]  # 2 -P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 1]]  # 4-P3/8- [-1, 1, space_to_depth, [1]]- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 1]]  # 7-P4/16- [-1, 1, space_to_depth, [1]]- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 1]]  # 10-P5/32- [-1, 1, space_to_depth, [1]]- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 13# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 8], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 16- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 5], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 19 (P3/8-small)- [-1, 1, Conv, [256, 3, 1]]- [-1, 1, space_to_depth, [1]]- [[-1, 16], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 23 (P4/16-medium)- [-1, 1, Conv, [512, 3, 1]]- [-1, 1, space_to_depth, [1]]- [[-1, 13], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 27 (P5/32-large)- [ [ 19, 23, 27 ], 1, Detect, [ nc ] ]  # Detect(P3, P4, P5)

3.加载配置文件并训练

加载yolov8-BiLevelRoutingAttention.yaml配置文件,并运行train.py训练代码:

#coding:utf-8
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('ultralytics/cfg/models/v8/yolov8-SPD-Conv.yaml')model.load('yolov8n.pt') # loading pretrain weightsmodel.train(data='datasets/TomatoData/data.yaml', epochs=50, batch=4)

注意观察,打印出的网络结构是否正常修改,如下图所示:
在这里插入图片描述

4.模型推理

模型训练完成后,我们使用训练好的模型对图片进行检测:

#coding:utf-8
from ultralytics import YOLO
import cv2# 所需加载的模型目录
# path = 'models/best2.pt'
path = 'runs/detect/train/weights/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/Riped tomato_8.jpeg"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=2,fy=2,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

在这里插入图片描述

【源码免费获取】

为了小伙伴们能够,更好的学习实践,本文已将所有代码、示例数据集、论文等相关内容打包上传,供小伙伴们学习。获取方式如下:

关注下方名片G-Z-H:【阿旭算法与机器学习】,发送【yolov8改进】即可免费获取

在这里插入图片描述


结束语

关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

这篇关于【保姆级教程|YOLOv8改进】【6】快速涨点,SPD-Conv助力低分辨率与小目标检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/688598

相关文章

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Java操作PDF文件实现签订电子合同详细教程

《Java操作PDF文件实现签订电子合同详细教程》:本文主要介绍如何在PDF中加入电子签章与电子签名的过程,包括编写Word文件、生成PDF、为PDF格式做表单、为表单赋值、生成文档以及上传到OB... 目录前言:先看效果:1.编写word文件1.2然后生成PDF格式进行保存1.3我这里是将文件保存到本地后

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

python库fire使用教程

《python库fire使用教程》本文主要介绍了python库fire使用教程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1.简介2. fire安装3. fire使用示例1.简介目前python命令行解析库用过的有:ar

LinuxMint怎么安装? Linux Mint22下载安装图文教程

《LinuxMint怎么安装?LinuxMint22下载安装图文教程》LinuxMint22发布以后,有很多新功能,很多朋友想要下载并安装,该怎么操作呢?下面我们就来看看详细安装指南... linux Mint 是一款基于 Ubuntu 的流行发行版,凭借其现代、精致、易于使用的特性,深受小伙伴们所喜爱。对

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —