【动态规划】【状态压缩】【2次选择】【广度搜索】1494. 并行课程 II

2024-02-05 12:04

本文主要是介绍【动态规划】【状态压缩】【2次选择】【广度搜索】1494. 并行课程 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

视频算法专题

本文涉及知识点

动态规划汇总
状态压缩 广度优先搜索

LeetCode1494. 并行课程 II

给你一个整数 n 表示某所大学里课程的数目,编号为 1 到 n ,数组 relations 中, relations[i] = [xi, yi] 表示一个先修课的关系,也就是课程 xi 必须在课程 yi 之前上。同时你还有一个整数 k 。
在一个学期中,你 最多 可以同时上 k 门课,前提是这些课的先修课在之前的学期里已经上过了。
请你返回上完所有课最少需要多少个学期。题目保证一定存在一种上完所有课的方式。
示例 1:
输入:n = 4, relations = [[2,1],[3,1],[1,4]], k = 2
输出:3
解释:上图展示了题目输入的图。在第一个学期中,我们可以上课程 2 和课程 3 。然后第二个学期上课程 1 ,第三个学期上课程 4 。
示例 2:
输入:n = 5, relations = [[2,1],[3,1],[4,1],[1,5]], k = 2
输出:4
解释:上图展示了题目输入的图。一个最优方案是:第一学期上课程 2 和 3,第二学期上课程 4 ,第三学期上课程 1 ,第四学期上课程 5 。
示例 3:
输入:n = 11, relations = [], k = 2
输出:6
提示:
1 <= n <= 15
1 <= k <= n
0 <= relations.length <= n * (n-1) / 2
relations[i].length == 2
1 <= xi, yi <= n
xi != yi
所有先修关系都是不同的,也就是说 relations[i] != relations[j] 。
题目输入的图是个有向无环图。

状态压缩

15门课程。枚举最后一次选择(选择1到15门) 和之前的选择(0到15门)。共多少种可能。暴力做法是:230

枚举第一门课 第二门课第三门课 的可能

不包括0,共7种可能。
const int iMaxMask = (1 << 3)-1;
for (int mask = iMaxMask; mask; mask = (mask - 1) & iMaxMask)
{
char sz1[100],sz2[100];
_itoa_s(mask, sz1, 2);
_itoa_s(iMaxMask - mask, sz2, 2);
std::cout << “最后一次选择:\t” << sz1 << " 之前的选择:\t" << sz2 << std::endl;
}
最后一次选择: 111 之前的选择: 0
最后一次选择: 110 之前的选择: 1
最后一次选择: 101 之前的选择: 10
最后一次选择: 100 之前的选择: 11
最后一次选择: 11 之前的选择: 100
最后一次选择: 10 之前的选择: 101
最后一次选择: 1 之前的选择: 110

枚举第一、三、四

不包括0,共7种可能,不需要枚举16种可能。自动忽略了不可能存在的状态2。
const int iMaxMask = 1+4+8;

最后一次选择: 111 之前的选择: 0
最后一次选择: 110 之前的选择: 1
最后一次选择: 101 之前的选择: 10
最后一次选择: 100 之前的选择: 11
最后一次选择: 11 之前的选择: 100
最后一次选择: 10 之前的选择: 101
最后一次选择: 1 之前的选择: 110

枚举iMaxMask [0,2n)

总时间复杂度是:O(3n) 315大约1.4e7。注意剪枝,否则容易超时。

动态规划

动态规划的状态表示

pre记录i学期能够完成的课程,dp记录i+1学期可以完成的课程。vHasDo记录已经完成的状态。状态没必要重复处理,i1<i2,如果某种状态i1学期能处理,那没必要i2学期处理。
空间复杂度:状态数 ,2n
时间复杂度: O(3n)

动态规划的转移方程

当前学期的课程,必须满足三个条件:
一,课程数小于等于k。
二,所有前置课程都已经完成。
三,这些课程没学习过。可以省略,会被淘汰。
预处理:
vPre[i] 表示第i门课需要的前面状态。
vNext[mask] 记录完成mask课程后,能够学习的课程。

动态规划的初始值

pre={0}

动态规划的填表顺序

i从0到大

动态规划的返回值

pre 包括(1<<n)-1时的i。

代码

核心代码

//通过 x &= (x-1)实现
int bitcount(unsigned x) {int countx = 0;while (x) {countx++;x &= (x - 1);}return countx;
}class Solution {
public:int minNumberOfSemesters(int n, vector<vector<int>>& relations, int k) {const int iMaskCount = 1 << n;vector<int> vPre(n);for (const auto& v : relations){vPre[v[1] - 1] |= 1 << (v[0] - 1);}vector<int> vNext(iMaskCount);for (int i = 0; i < iMaskCount; i++){for (int j = 0; j < n; j++){if ((vPre[j] & i) == vPre[j]){vNext[i] |= (1 << j);}}}vector<int> pre = { 0 };vector<bool> vHasDo(iMaskCount);for (int i = 0; ; i++){vector<int> dp;for (const int& iPre : pre){if (iPre + 1 == iMaskCount){return i;}const int iRemain = (iMaskCount - 1) - iPre;const int iCanSel = iRemain& vNext[iPre];auto Add = [&](const int& cur){const int iNew = cur | iPre;if (!vHasDo[iNew]){dp.emplace_back(iNew);vHasDo[iNew] = true;}};if (bitcount((unsigned int)iCanSel) <= k){Add(iCanSel);continue;}for (int cur = iCanSel; cur; cur = (cur - 1) & iCanSel){					if (bitcount((unsigned int)cur) == k){Add(cur);}}}pre.swap(dp);}return -1;}
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{	int n, k;vector<vector<int>> relations;{Solution sln;n = 4, relations = { {2,1},{3,1},{1,4} }, k = 2;auto res = sln.minNumberOfSemesters(n, relations, k);Assert(3, res);}{Solution sln;n = 5, relations = { {2,1},{3,1},{4,1},{1,5} }, k = 2;auto res = sln.minNumberOfSemesters(n, relations, k);Assert(4, res);}{Solution sln;n = 11, relations = {}, k = 2;auto res = sln.minNumberOfSemesters(n, relations, k);Assert(6, res);}
}

动态规划

剪枝 忽略非法的前者状态。

//通过 x &= (x-1)实现
int bitcount(unsigned x) {int countx = 0;while (x) {countx++;x &= (x - 1);}return countx;
}template<class ELE,class ELE2>
void MinSelf(ELE* seft, const ELE2& other)
{*seft = min(*seft,(ELE) other);
}template<class ELE>
void MaxSelf(ELE* seft, const ELE& other)
{*seft = max(*seft, other);
}class Solution {
public:int minNumberOfSemesters(int n, vector<vector<int>>& relations, int k) {const int iMaskCount = 1 << n;		vector<int> vPre(n);for (const auto& v : relations){vPre[v[1] - 1] |= 1 << (v[0] - 1);}vector<int> vNext(iMaskCount), vLen(iMaskCount);for (int i = 0; i < iMaskCount; i++){vLen[i] = bitcount((unsigned int)i);for (int j = 0; j < n; j++){if ((vPre[j] & i) == vPre[j]){vNext[i] |= (1 << j);}}}vector<int> vRet(iMaskCount,100);vRet[0] = 0;for (int i = 0; i < iMaskCount; i++){		if(vRet[i] >= 100 ){continue;}const int iNeedStudy = (iMaskCount - 1) ^ i;//未学课程const int iCanStudy = iNeedStudy & vNext[i]; //只能学前置课程已学的课程if (vLen[iCanStudy] <= k){MinSelf(&vRet[i| iCanStudy], vRet[i] + 1);}for (int j = iCanStudy; j; j= iCanStudy &(j-1)){//i是已学课程,j是本学期将学的课程	if (bitcount((unsigned )j) != k ){continue;}MinSelf(&vRet[i | j], vRet[i] + 1);}}	return vRet.back();}
};

2023年2月第一版

class Solution {
public:
int minNumberOfSemesters(int n, vector<vector>& relations, int k) {
m_iN = n;
m_iK = k;
m_iMaskNum = 1 << n;
m_vPreCourse.resize(n);
for (const auto& v : relations)
{
m_vPreCourse[v[1] - 1] |= (1 << (v[0] - 1));
}
m_vMinSemesters.resize(m_iMaskNum, m_iNotMay);
vector pre(1);
m_vMinSemesters[0] = 0;
for (int iSem = 0;; iSem++)
{
vector dp;
for (const auto& pr : pre)
{
if (pr + 1 == m_iMaskNum)
{
return iSem;
}
int iCanStudy = GetCanStudy(pr);
dfs(dp, pr, iCanStudy, iCanStudy, k,-1);
}
pre.swap(dp);
}
return 0;
}
inline int GetCanStudy(int preMask)const
{
int iCanStudy = 0;
for (int n = 0; n < m_iN; n++)
{
if (preMask & (1 << n))
{//之前已经学习
continue;
}
if ((m_vPreCourse[n] & preMask) != m_vPreCourse[n])
{//先行课程没有学习
continue;
}
iCanStudy |= (1 << n);
}
return iCanStudy;
}
void dfs(vector& dp, const int& preMask, const int& iCanStudy, int iRemain, int iLeve,int iPreN)
{
if ((0 == iLeve) || (0 == iRemain))
{
const int iNewMask = preMask |(iCanStudy - iRemain );
if (m_iNotMay != m_vMinSemesters[iNewMask])
{
return;
}
dp.push_back(iNewMask);
m_vMinSemesters[iNewMask] = m_vMinSemesters[preMask] + 1;
return;
}
for (int n = iPreN+1; n < m_iN; n++)
{
if (iRemain & (1 << n))
{
dfs(dp, preMask, iCanStudy, iRemain -(1 << n ), iLeve - 1,n);
}
}
}
vector m_vPreCourse;
vector m_vMinSemesters;
int m_iMaskNum;
int m_iK;
int m_iN;
const int m_iNotMay = 1000 * 1000;
};

2023年2月第二版

class Solution {
public:
int minNumberOfSemesters(int n, vector<vector>& relations, int k) {
m_iN = n;
m_iK = k;
m_iMaskNum = 1 << n;
m_vPreCourse.resize(n);
for (const auto& v : relations)
{
m_vPreCourse[v[1] - 1] |= (1 << (v[0] - 1));
}
m_vMinSemesters.resize(m_iMaskNum, m_iNotMay);
vector pre(1);
m_vMinSemesters[0] = 0;
for (int iSem = 0;; iSem++)
{
vector dp;
for (const auto& pr : pre)
{
if (pr + 1 == m_iMaskNum)
{
return iSem;
}
int iCanStudy = GetCanStudy(pr);
dfs(dp, pr, iCanStudy, iCanStudy, k, iCanStudy);
}
pre.swap(dp);
}
return 0;
}
inline int GetCanStudy(int preMask)const
{
int iCanStudy = 0;
for (int n = 0; n < m_iN; n++)
{
if (preMask & (1 << n))
{//之前已经学习
continue;
}
if ((m_vPreCourse[n] & preMask) != m_vPreCourse[n])
{//先行课程没有学习
continue;
}
iCanStudy |= (1 << n);
}
return iCanStudy;
}
void dfs(vector& dp, const int& preMask, const int& iCanStudy, int iRemain, int iLeve,int iCanSel)
{
if ((0 == iLeve) || (0 == iCanSel))
{
const int iNewMask = preMask |(iCanStudy - iRemain );
if (m_iNotMay != m_vMinSemesters[iNewMask])
{
return;
}
dp.push_back(iNewMask);
m_vMinSemesters[iNewMask] = m_vMinSemesters[preMask] + 1;
return;
}
while (iCanSel)
{
const int iNextCanSel = (iCanSel - 1)& iCanSel;
const int n = iCanSel - iNextCanSel;
iCanSel = iNextCanSel;
dfs(dp, preMask, iCanStudy, iRemain-n, iLeve - 1, iCanSel);
}
}
vector m_vPreCourse;
vector m_vMinSemesters;
int m_iMaskNum;
int m_iK;
int m_iN;
const int m_iNotMay = 1000 * 1000;
};

2023年7月版

using namespace std;

template
void OutToConsoleInner(const vector& vec, const string& strSep = " ")
{
for (int i = 0; i < vec.size(); i++)
{
if (0 != i % 25)
{
std::cout << strSep.c_str();
}
std::cout << setw(3) << setfill(’ ') << vec[i];
if (0 == (i + 1) % 25)
{
std::cout << std::endl;
}
else if (0 == (i + 1) % 5)
{
std::cout << strSep.c_str();
}
}
}

class CConsole
{
public:

template<class T>
static void Out(const vector<T>& vec, const string& strColSep = " ", const string& strRowSep = "\r\n")
{OutToConsoleInner(vec, strColSep);std::cout << strRowSep.c_str();
}template<class T>
static void Out(const vector<vector<T>>& matrix, const string& strColSep = " ", const string& strRowSep = "\r\n")
{for (int i = 0; i < matrix.size(); i++){OutToConsoleInner(matrix[i], strColSep);std::cout << strRowSep.c_str();}
}template<class T>
static void Out(const std::map<T, std::vector<int> >& mTopPointToPoints, const string& strColSep = " ", const string& strRowSep = "\r\n")
{for (auto kv : mTopPointToPoints){std::cout << kv.first << ":";OutToConsoleInner(kv.second, strColSep);std::cout << strRowSep.c_str();}
}static void Out(const  std::string& t, const string& strColSep = " ", const string& strRowSep = "\r\n")
{std::cout << t.c_str() << strColSep.c_str();
}template<class T  >
static void Out(const T& t, const string& strColSep = " ", const string& strRowSep = "\r\n")
{std::cout << t << strColSep.c_str();
}

};

void GenetateSum(vector& sums, const vector& nums)
{
sums.push_back(0);
for (int i = 0; i < nums.size(); i++)
{
sums.push_back(nums[i] + sums[i]);
}
}

//[iBegin,iEnd]之和
long long Total(int iBegin, int iEnd)
{
return (long long)(iBegin + iEnd) * (iEnd - iBegin + 1) / 2;
}

class CLadderhlp
{
public:
CLadderhlp(int ladders)
{
m_uLadderNum = ladders;
}
void AddNeedBick(int iNeedBick)
{
if (0 == m_uLadderNum)
{
return;
}
if (m_ladders.size() < m_uLadderNum)
{
m_ladders.push(iNeedBick);
m_iEaqualBicks += iNeedBick;
return;
}
int iTop = m_ladders.top();
if (iTop >= iNeedBick)
{
return;
}
m_iEaqualBicks -= iTop;
m_iEaqualBicks += iNeedBick;
m_ladders.pop();
m_ladders.push(iNeedBick);
}
std::priority_queue<int, vector, std::greater > m_ladders;
unsigned int m_uLadderNum;
long long m_iEaqualBicks = 0;
};

struct CPeo
{
CPeo(string strName, CPeo* pParent = nullptr)
{
m_strName = strName;
m_pParent = pParent;
}
string m_strName;
vector<CPeo*> m_childs;
CPeo* m_pParent = nullptr;
};

class CNeighborTable
{
public:
void Init(const vector<vector>& edges)
{

}
vector<vector<int>> m_vTable;

};

//通过 x &= (x-1)实现
int bitcount(unsigned x) {
int countx = 0;
while (x) {
countx++;
x &= (x - 1);
}
return countx;
}

int bitcount(unsigned long long x) {
int countx = 0;
while (x) {
countx++;
x &= (x - 1);
}
return countx;
}

class CRange
{
public:
template
CRange(const T& v)
{
m_iBegin = 0;
m_iEnd = v.size();
}
bool In(int iIndex)
{
return (iIndex >= m_iBegin) && (iIndex < m_iEnd);
}
const int End()
{
return m_iEnd;
}
protected:
int m_iBegin;
int m_iEnd;
};

template
class CTrie
{
public:
CTrie() :m_vPChilds(iTypeNum)
{

}
template<class IT>
void Add(IT begin, IT end)
{CTrie<iTypeNum, cBegin>* pNode = this;for (; begin != end; ++begin){pNode = pNode->AddChar(*begin).get();}
}
template<class IT>
bool Search(IT begin, IT end)
{if (begin == end){return true;}if ('.' == *begin){for (auto& ptr : m_vPChilds){if (!ptr){continue;}if (ptr->Search(begin + 1, end)){return true;}}}auto ptr = GetChild(*begin);if (nullptr == ptr){return false;}return ptr->Search(begin + 1, end);
}

protected:
std::shared_ptr AddChar(char ch)
{
if ((ch < cBegin) || (ch >= cBegin + iTypeNum))
{
return nullptr;
}
const int index = ch - cBegin;
auto ptr = m_vPChilds[index];
if (!ptr)
{
m_vPChilds[index] = std::make_shared<CTrie<iTypeNum, cBegin>>();
}
return m_vPChilds[index];
}
std::shared_ptr GetChild(char ch)const
{
if ((ch < cBegin) || (ch >= cBegin + iTypeNum))
{
return nullptr;
}
return m_vPChilds[ch - cBegin];
}
std::vector<std::shared_ptr> m_vPChilds;
};

class CWords
{
public:
void Add(const string& word)
{
m_strStrs.insert(word);
}
bool Search(const string& word)
{
return Search(m_strStrs.begin(), m_strStrs.end(), 0, word.length(), word);
}
protected:
bool Search(std::set::const_iterator begin, std::set::const_iterator end, int iStrBegin, int iStrEnd, const string& str)
{
int i = iStrBegin;
for (; (i < iStrEnd) && (str[i] != ‘.’); i++);
auto it = std::equal_range(begin, end, str, [&iStrBegin, &i](const string& s, const string& sFind)
{
return s.substr(iStrBegin, i - iStrBegin) < sFind.substr(iStrBegin, i - iStrBegin);
});
if (i == iStrBegin)
{
it.first = begin;
it.second = end;
}
if (it.first == it.second)
{
return false;
}
if (i == iStrEnd)
{
return true;
}
if (i + 1 == iStrEnd)
{
return true;
}
string tmp = str;
for (char ch = ‘a’; ch <= ‘z’; ch++)
{
tmp[i] = ch;
auto ij = std::equal_range(it.first, it.second, tmp, [&ch, &i](const string& s, const string& sFind)
{
return s[i] < sFind[i];
});
if (ij.first == ij.second)
{
continue;
}

		if (Search(ij.first, ij.second, i + 1, iStrEnd, str)){return true;}}return false;
}std::set<string> m_strStrs;

};
class WordDictionary {
public:
WordDictionary() {
for (int i = 0; i < 26; i++)
{
m_str[i] = std::make_unique();
}
}

void addWord(string word) {m_str[word.length()]->Add(word);
}bool search(string word) {return m_str[word.length()]->Search(word);
}
std::unique_ptr<CWords> m_str[26];

};

template
class C1097Int
{
public:
C1097Int(long long llData = 0) :m_iData(llData% MOD)
{

}
C1097Int  operator+(const C1097Int& o)const
{return C1097Int(((long long)m_iData + o.m_iData) % MOD);
}
C1097Int& operator+=(const C1097Int& o)
{m_iData = ((long long)m_iData + o.m_iData) % MOD;return *this;
}
C1097Int& operator-=(const C1097Int& o)
{m_iData = (m_iData + MOD - o.m_iData) % MOD;return *this;
}
C1097Int  operator-(const C1097Int& o)
{return C1097Int((m_iData + MOD - o.m_iData) % MOD);
}
C1097Int  operator*(const C1097Int& o)const
{return((long long)m_iData * o.m_iData) % MOD;
}
C1097Int& operator*=(const C1097Int& o)
{m_iData = ((long long)m_iData * o.m_iData) % MOD;return *this;
}
bool operator<(const C1097Int& o)const
{return m_iData < o.m_iData;
}
C1097Int pow(int n)const
{C1097Int iRet = 1, iCur = *this;while (n){if (n & 1){iRet *= iCur;}iCur *= iCur;n >>= 1;}return iRet;
}
C1097Int PowNegative1()const
{return pow(MOD - 2);
}
int ToInt()const
{return m_iData;
}

private:
int m_iData = 0;;
};

template
int operator+(int iData, const C1097Int& int1097)
{
int iRet = int1097.operator+(C1097Int(iData)).ToInt();
return iRet;
}

template
int& operator+=(int& iData, const C1097Int& int1097)
{
iData = int1097.operator+(C1097Int(iData)).ToInt();
return iData;
}

template
int operator*(int iData, const C1097Int& int1097)
{
int iRet = int1097.operator*(C1097Int(iData)).ToInt();
return iRet;
}

template
int& operator*=(int& iData, const C1097Int& int1097)
{
iData = int1097.operator*(C1097Int(iData)).ToInt();
return iData;
}

template
void MinSelf(T* seft, const T& other)
{
*seft = min(*seft, other);
}

template
void MaxSelf(T* seft, const T& other)
{
*seft = max(*seft, other);
}

int GetNotRepeateNum(int len, int iHasSel)
{
if (0 == len)
{
return 1;
}
if ((0 == iHasSel) && (1 == len))
{
return 10;
}
int iRet = 1;
if (iHasSel > 0)
{
for (int tmp = 10 - iHasSel; (tmp >= 2) && len; tmp–, len–)
{
iRet *= tmp;
}
}
else
{
iRet *= 9;
len–;
for (int tmp = 9; (tmp >= 2) && len; len–, tmp–)
{
iRet *= tmp;
}
}
return iRet;
}

int GCD(int n1, int n2)
{
int t1 = min(n1, n2);
int t2 = max(n1, n2);
if (0 == t1)
{
return t2;
}
return GCD(t2 % t1, t1);
}

void CreateMaskVector(vector& v, const int* const p, int n)
{
const int iMaxMaskNum = 1 << n;
v.resize(iMaxMaskNum);
for (int i = 0; i < n; i++)
{
v[1 << i] = p[i];
}
for (int mask = 1; mask < iMaxMaskNum; mask++)
{
const int iSubMask = mask & (-mask);
v[mask] = v[iSubMask] + v[mask - iSubMask];
}
}

class CMaxLineTree
{
public:
CMaxLineTree(int iArrSize) :m_iArrSize(iArrSize), m_vData(iArrSize * 4)
{

}
//iIndex 从0开始
void Modify(int iIndex, int iValue)
{Modify(1, 1, m_iArrSize, iIndex + 1, iValue);
}
//iNeedQueryLeft iNeedQueryRight 从0开始
int Query(const int iNeedQueryLeft, const int iNeedQueryRight)
{return Query(1, 1, m_iArrSize, iNeedQueryLeft + 1, iNeedQueryRight + 1);
}

protected:
int Query(const int iTreeNodeIndex, const int iRecordLeft, const int iRecordRight, const int iNeedQueryLeft, const int iNeedQueryRight)
{
if ((iNeedQueryLeft <= iRecordLeft) && (iNeedQueryRight >= iRecordRight))
{
return m_vData[iTreeNodeIndex];
}
const int iMid = (iRecordLeft + iRecordRight) / 2;
int iRet = 0;
if (iNeedQueryLeft <= iMid)
{
iRet = Query(iTreeNodeIndex * 2, iRecordLeft, iMid, iNeedQueryLeft, iNeedQueryRight);
}
if (iNeedQueryRight > iMid)
{
iRet = max(iRet, Query(iTreeNodeIndex * 2 + 1, iMid + 1, iRecordRight, iNeedQueryLeft, iNeedQueryRight));
}
return iRet;
}
void Modify(int iTreeNodeIndex, int iLeft, int iRight, int iIndex, int iValue)
{
if (iLeft == iRight)
{
m_vData[iTreeNodeIndex] = max(m_vData[iTreeNodeIndex], iValue);
return;
}
const int iMid = (iLeft + iRight) / 2;
if (iIndex <= iMid)
{
Modify(iTreeNodeIndex * 2, iLeft, iMid, iIndex, iValue);
}
else
{
Modify(iTreeNodeIndex * 2 + 1, iMid + 1, iRight, iIndex, iValue);
}
m_vData[iTreeNodeIndex] = max(m_vData[iTreeNodeIndex * 2], m_vData[iTreeNodeIndex * 2 + 1]);
}
const int m_iArrSize;
std::vector m_vData;
};

class CMaxLineTreeMap
{
public:
CMaxLineTreeMap(int iArrSize) :m_iArrSize(iArrSize)
{

}
//iIndex 从0开始
void Modify(int iIndex, int iValue)
{Modify(1, 1, m_iArrSize, iIndex + 1, iValue);
}
//iNeedQueryLeft iNeedQueryRight 从0开始
int Query(const int iNeedQueryLeft, const int iNeedQueryRight)
{return Query(1, 1, m_iArrSize, iNeedQueryLeft + 1, iNeedQueryRight + 1);
}

protected:
int Query(const int iTreeNodeIndex, const int iRecordLeft, const int iRecordRight, const int iNeedQueryLeft, const int iNeedQueryRight)
{
if ((iNeedQueryLeft <= iRecordLeft) && (iNeedQueryRight >= iRecordRight))
{
return m_mData[iTreeNodeIndex];
}
const int iMid = (iRecordLeft + iRecordRight) / 2;
int iRet = 0;
if (iNeedQueryLeft <= iMid)
{
iRet = Query(iTreeNodeIndex * 2, iRecordLeft, iMid, iNeedQueryLeft, iNeedQueryRight);
}
if (iNeedQueryRight > iMid)
{
iRet = max(iRet, Query(iTreeNodeIndex * 2 + 1, iMid + 1, iRecordRight, iNeedQueryLeft, iNeedQueryRight));
}
return iRet;
}
void Modify(int iTreeNodeIndex, int iLeft, int iRight, int iIndex, int iValue)
{
if (iLeft == iRight)
{
m_mData[iTreeNodeIndex] = max(m_mData[iTreeNodeIndex], iValue);
return;
}
const int iMid = (iLeft + iRight) / 2;
if (iIndex <= iMid)
{
Modify(iTreeNodeIndex * 2, iLeft, iMid, iIndex, iValue);
}
else
{
Modify(iTreeNodeIndex * 2 + 1, iMid + 1, iRight, iIndex, iValue);
}
m_mData[iTreeNodeIndex] = max(m_mData[iTreeNodeIndex * 2], m_mData[iTreeNodeIndex * 2 + 1]);
}
const int m_iArrSize;
std::unordered_map<int, int> m_mData;
};

template
class CSumLineTree
{
public:
CSumLineTree(int iEleSize) :m_iEleSize(iEleSize), m_vArr(m_iEleSize * 4), m_vChildAdd(m_iEleSize * 4)
{

}
void Add(int iLeftIndex, int iRightIndex, int iValue)
{Add(1, 1, m_iEleSize, iLeftIndex + 1, iRightIndex + 1, iValue);
}
T Query(int iLeftIndex, int iRightIndex)
{return Query(1, 1, m_iEleSize, iLeftIndex + 1, iRightIndex + 1);
}

private:
T Query(int iNode, int iDataLeft, int iDataRight, int iOpeLeft, int iOpeRight)
{
if ((iOpeLeft <= iDataLeft) && (iOpeRight >= iDataRight))
{
return m_vArr[iNode];
}
Fresh(iNode, iDataLeft, iDataRight);
const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;
T ret(0);
if (iMid >= iOpeLeft)
{
ret += Query(iNode * 2, iDataLeft, iMid, iOpeLeft, iOpeRight);
}
if (iMid + 1 <= iOpeRight)
{
ret += Query(iNode * 2 + 1, iMid + 1, iDataRight, iOpeLeft, iOpeRight);
}
return ret;
}
/* 暴力解法
void Add(int iNode, int iDataLeft, int iDataRight, int iOpeLeft, int iOpeRight, int iValue)
{
m_vArr[iNode] += T(iValue)*(min(iDataRight, iOpeRight) - max(iDataLeft, iOpeLeft)+1);
if (iDataLeft == iDataRight)
{
return;
}
const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;
if (iMid >= iOpeLeft)
{
Add(iNode * 2, iDataLeft, iMid, iOpeLeft, iOpeRight, iValue);
}
if (iMid + 1 <= iOpeRight)
{
Add(iNode * 2 + 1, iMid + 1, iDataRight, iOpeLeft, iOpeRight, iValue);
}
}
*/
void Fresh(int iNode, int iDataLeft, int iDataRight)
{
const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;
if (m_vChildAdd[iNode] != 0)
{
Add(iNode * 2, iDataLeft, iMid, iDataLeft, iMid, m_vChildAdd[iNode]);
Add(iNode * 2 + 1, iMid + 1, iDataRight, iMid + 1, iDataRight, m_vChildAdd[iNode]);
m_vChildAdd[iNode] = 0;
}
}
//懒惰法
void Add(int iNode, int iDataLeft, int iDataRight, int iOpeLeft, int iOpeRight, int iValue)
{
m_vArr[iNode] += T(iValue) * (min(iDataRight, iOpeRight) - max(iDataLeft, iOpeLeft) + 1);
if ((iOpeLeft <= iDataLeft) && (iOpeRight >= iDataRight))
{
m_vChildAdd[iNode] += T(iValue);
return;
}

	Fresh(iNode, iDataLeft, iDataRight);const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;if (iMid >= iOpeLeft){Add(iNode * 2, iDataLeft, iMid, iOpeLeft, iOpeRight, iValue);}if (iMid + 1 <= iOpeRight){Add(iNode * 2 + 1, iMid + 1, iDataRight, iOpeLeft, iOpeRight, iValue);}
}const int m_iEleSize;
vector<T> m_vArr;
vector<int> m_vChildAdd;

};

template
class CTreeArr
{
public:
CTreeArr(int iSize) :m_vData(iSize + 1)
{

}
void Add(int index, T value)
{index++;while (index < m_vData.size()){m_vData[index] += value;index += index & (-index);}
}
T Sum(int index)
{index++;T ret = 0;while (index){ret += m_vData[index];index -= index & (-index);}return ret;
}
T Get(int index)
{return Sum(index) - Sum(index - 1);
}

private:
vector m_vData;
};

//iCodeNum 必须大于等于可能的字符数
template
class CHashStr {
public:
CHashStr(string s, int iCodeNum, int iCodeBegin = 1, char chBegin = ‘a’) {
m_c = s.length();
m_vP.resize(m_c + 1);
m_vP[0] = 1;
m_vHash.resize(m_c + 1);
for (int i = 0; i < m_c; i++)
{
const int P = iCodeBegin + iCodeNum;
m_vHash[i + 1] = m_vHash[i] * P + s[i] - chBegin + iCodeBegin;
m_vP[i + 1] = m_vP[i] * P;
}
}
//包括left right
int GetHash(int left, int right)
{
return (m_vHash[right + 1] - m_vHash[left] * m_vP[right - left + 1]).ToInt();
}
inline int GetHash(int right)
{
return m_vHash[right + 1].ToInt();
}
int GetHashExincludeRight(int left, int right)
{
return (m_vHash[right ] - m_vHash[left] * m_vP[right - left ]).ToInt();
}
inline int GetHashExincludeRight(int right)
{
return m_vHash[right].ToInt();
}
int m_c;
vector<C1097Int> m_vP;
vector<C1097Int> m_vHash;
};

template
class C2HashStr
{
public:
C2HashStr(string s) {
m_pHash1 = std::make_unique<CHashStr<>>(s, 26);
m_pHash2 = std::make_unique < CHashStr>(s, 27, 0);
}
//包括left right
long long GetHash(int left, int right)
{
return (long long)m_pHash1->GetHash(left, right) * (MOD2 + 1) + m_pHash2->GetHash(left, right);
}
long long GetHash(int right)
{
return (long long)m_pHash1->GetHash(right) * (MOD2 + 1) + m_pHash2->GetHash(right);
}
//包括Left,不包括Right
long long GetHashExincludeRight(int left, int right)
{
return (long long)m_pHash1->GetHashExincludeRight(left, right) * (MOD2 + 1) + m_pHash2->GetHashExincludeRight(left, right);
}
long long GetHashExincludeRight(int right)
{
return (long long)m_pHash1->GetHashExincludeRight(right) * (MOD2 + 1) + m_pHash2->GetHashExincludeRight(right);
}
private:
std::unique_ptr<CHashStr<>> m_pHash1;
std::unique_ptr<CHashStr> m_pHash2;
};

template
class CDynaHashStr {
public:
CDynaHashStr(int iCodeNum, int iCodeBegin = 1, char chBegin = ‘a’) :m_iUnit(iCodeNum + iCodeBegin), m_iP(1), m_iBegin(iCodeBegin - chBegin)
{

}
inline void push_back(const char& ch)
{const int iNum = ch + m_iBegin;m_iHash *= m_iUnit;m_iHash += iNum;m_iP *= m_iUnit;
}
inline void push_front(const char& ch)
{const int iNum = ch + m_iBegin;m_iHash += m_iP * iNum;m_iP *= m_iUnit;
}
inline int GetHash() const
{return m_iHash;
}
const int m_iUnit;
const int m_iBegin;
C1097Int<MOD> m_iHash;
C1097Int<MOD> m_iP;

};

template
class C2DynaHashStr {
public:
C2DynaHashStr(int iCodeNum, int iCodeBegin = 1, char chBegin = ‘a’)
{
m_pHash1 = new CDynaHashStr<>(iCodeNum, iCodeBegin, chBegin);
m_pHash2 = new CDynaHashStr(iCodeNum, iCodeBegin, chBegin);
}
~C2DynaHashStr()
{
delete m_pHash1;
delete m_pHash2;
}
inline void push_back(const char& ch)
{
m_pHash1->push_back(ch);
m_pHash2->push_back(ch);
}
inline void push_front(const char& ch)
{
m_pHash1->push_front(ch);
m_pHash2->push_front(ch);
}
long long Hash()const
{
return (long long)MOD2 * m_pHash1->m_iHash.ToInt() + m_pHash2->m_iHash.ToInt();
}
bool operator==(const C2DynaHashStr& other) const
{
return (m_pHash1->m_iHash.ToInt() == other.m_pHash1->m_iHash.ToInt()) && (m_pHash2->m_iHash.ToInt() == other.m_pHash2->m_iHash.ToInt());
}
CDynaHashStr<>* m_pHash1;
CDynaHashStr* m_pHash2;
};
namespace NSort
{
template
bool SortVecVec(const vector& v1, const vector& v2)
{
return v1[ArrIndex] < v2[ArrIndex];
};
}

namespace NCmp
{
template
bool Less(const std::pair<Class1, int>& p, Class1 iData)
{
return p.first < iData;
}

template<class Class1>
bool  Greater(const std::pair<Class1, int>& p, Class1 iData)
{return p.first > iData;
}template<class _Ty1, class _Ty2>
class CLessPair
{
public:bool operator()(const std::pair<_Ty1, _Ty2>& p1, const std::pair<_Ty1, _Ty2>& p2)const{return p1.first < p2.first;}
};template<class _Ty1, class _Ty2>
class CGreatePair
{
public:bool operator()(const std::pair<_Ty1, _Ty2>& p1, const std::pair<_Ty1, _Ty2>& p2)const{return p1.first > p2.first;}
};

}

class CIndexVector
{
public:
template
CIndexVector(vector& data)
{
for (int i = 0; i < data.size(); i++)
{
m_indexs.emplace_back(i);
}
std::sort(m_indexs.begin(), m_indexs.end(), [data](const int& i1, const int& i2)
{
return data[i1] < data[i2];
});
}
int GetIndex(int index)
{
return m_indexs[index];
}
private:
vector m_indexs;
};

class CMedian
{
public:
void AddNum(int iNum)
{
m_queTopMin.emplace(iNum);
MakeNumValid();
MakeSmallBig();
}
void Remove(int iNum)
{
if (m_queTopMax.size() && (iNum <= m_queTopMax.top()))
{
m_setTopMaxDel.insert(iNum);
}
else
{
m_setTopMinDel.insert(iNum);
}

	PopIsTopIsDel(m_queTopMin, m_setTopMinDel);PopIsTopIsDel(m_queTopMax, m_setTopMaxDel);MakeNumValid();MakeSmallBig();
}
double Median()
{const int iMaxNum = m_queTopMin.size() - m_setTopMinDel.size();const int iMinNum = m_queTopMax.size() - m_setTopMaxDel.size();if (iMaxNum > iMinNum){return m_queTopMin.top();}return ((double)m_queTopMin.top() + m_queTopMax.top()) / 2.0;
}
template<class T>
void PopIsTopIsDel(T& que, std::unordered_multiset<int>& setTopMaxDel)
{while (que.size() && (setTopMaxDel.count(que.top()))){setTopMaxDel.erase(setTopMaxDel.find(que.top()));que.pop();}
}
void MakeNumValid()
{const int iMaxNum = m_queTopMin.size() - m_setTopMinDel.size();const int iMinNum = m_queTopMax.size() - m_setTopMaxDel.size();//确保两个队的数量if (iMaxNum > iMinNum + 1){int tmp = m_queTopMin.top();m_queTopMin.pop();m_queTopMax.emplace(tmp);PopIsTopIsDel(m_queTopMin, m_setTopMinDel);}if (iMinNum > iMaxNum){int tmp = m_queTopMax.top();m_queTopMax.pop();m_queTopMin.push(tmp);PopIsTopIsDel(m_queTopMax, m_setTopMaxDel);}
}
void MakeSmallBig()
{if (m_queTopMin.empty() || m_queTopMax.empty()){return;}while (m_queTopMin.top() < m_queTopMax.top()){const int iOldTopMin = m_queTopMin.top();const int iOldTopMax = m_queTopMax.top();m_queTopMin.pop();m_queTopMax.pop();m_queTopMin.emplace(iOldTopMax);m_queTopMax.emplace(iOldTopMin);PopIsTopIsDel(m_queTopMin, m_setTopMinDel);PopIsTopIsDel(m_queTopMax, m_setTopMaxDel);}
}
std::priority_queue<int> m_queTopMax;
std::priority_queue<int, vector<int>, greater<int>> m_queTopMin;
std::unordered_multiset<int> m_setTopMaxDel, m_setTopMinDel;

};

template
class CDistanceGrid
{
public:
CDistanceGrid(const vector<vector>& grid) :m_grid(grid), m_r(grid.size()), m_c(grid[0].size())
{

}
//单源路径 D 算法 ,时间复杂度:r*c*log(r*c)
inline int Dis(int r1, int c1, int r2, int c2)
{vector<vector<int>> vDis(iMaxRow, vector<int>(iMaxCol, INT_MAX));auto Add = [&vDis, this](std::priority_queue<pair<int, int>, vector<std::pair<int, int>>, greater<pair<int, int>>>& queCur, int iDis, int r, int c){const int iRowColMask = iMaxCol * r + c;if (iDis >= vDis[r][c]){return;}queCur.emplace(iDis, iRowColMask);vDis[r][c] = iDis;};auto Move = [&](std::priority_queue<pair<int, int>, vector<std::pair<int, int>>, greater<pair<int, int>>>& queCur, int iDis, int r, int c){if ((r < 0) || (r >= m_r)){return;}if ((c < 0) || (c >= m_c)){return;}if (m_grid[r][c] < 1){return;}Add(queCur, iDis, r, c);};std::priority_queue<pair<int, int>, vector<std::pair<int, int>>, greater<pair<int, int>>> que;Add(que, 0, r1, c1);while (que.size()){const int iDis = que.top().first;const int iStart = que.top().second;que.pop();const int r = iStart / iMaxCol;const int c = iStart % iMaxCol;if ((r == r2) && (c == c2)){return iDis;}if (iDis > vDis[r][c]){continue;}Move(que, iDis + 1, r + 1, c);Move(que, iDis + 1, r - 1, c);Move(que, iDis + 1, r, c + 1);Move(que, iDis + 1, r, c - 1);}return -1;
}

private:
virtual bool IsCanMoveStatue(int r, int c)
{
return m_grid[r][c] >= 1;
}
const int m_r;
const int m_c;
const vector<vector>& m_grid;

};

class CBFSGridDist
{
public:
CBFSGridDist(const vector<vector>& bCanVisit, int r, int c) :m_bCanVisit(bCanVisit), m_r(m_bCanVisit.size()), m_c(m_bCanVisit[0].size())
{
m_vDis.assign(m_r, vector(m_c, INT_MAX / 2));
Dist(r, c);
}
bool Vilid(const int r, const int c)
{
if ((r < 0) || (r >= m_r))
{
return false;
}
if ((c < 0) || (c >= m_c))
{
return false;
}
return true;
}
const vector<vector>& Dis()const
{
return m_vDis;
}
const vector<vector>& m_bCanVisit;
private:
//INT_MAX/2 表示无法到达
void Dist(int r, int c)
{
m_vDis.assign(m_r, vector(m_c, INT_MAX / 2));
vector<vector> vHasDo(m_r, vector(m_c));
std::queue<std::pair<int, int>> que;
auto Add = [&](const int& r, const int& c, const int& iDis)
{
if (!Vilid(r, c))
{
return;
}
if (vHasDo[r][c])
{
return;
}
if (!m_bCanVisit[r][c])
{
vHasDo[r][c] = true;
return;
}
if (iDis >= m_vDis[r][c])
{
return;
}

		que.emplace(r, c);m_vDis[r][c] = iDis;vHasDo[r][c] = true;};Add(r, c, 0);while (que.size()){const int r = que.front().first;const int c = que.front().second;que.pop();const int iDis = m_vDis[r][c];Add(r + 1, c, iDis + 1);Add(r - 1, c, iDis + 1);Add(r, c + 1, iDis + 1);Add(r, c - 1, iDis + 1);}}
vector<vector<int>> m_vDis;
const int m_r;
const int m_c;

};

class C2BNumTrieNode
{
public:
C2BNumTrieNode()
{
m_childs[0] = m_childs[1] = nullptr;
}
bool GetNot0Child(bool bFirstRight)
{
auto ptr = m_childs[bFirstRight];
if (ptr && (ptr->m_iNum > 0))
{
return bFirstRight;
}
return !bFirstRight;
}
int m_iNum = 0;
C2BNumTrieNode* m_childs[2];
};

template
class C2BNumTrie
{
public:
C2BNumTrie()
{
m_pRoot = new C2BNumTrieNode();
}
void Add(int iNum)
{
m_setHas.emplace(iNum);
C2BNumTrieNode* p = m_pRoot;
for (int i = iLeveNum - 1; i >= 0; i–)
{
p->m_iNum++;
bool bRight = iNum & (1 << i);
if (nullptr == p->m_childs[bRight])
{
p->m_childs[bRight] = new C2BNumTrieNode();
}
p = p->m_childs[bRight];
}
p->m_iNum++;
}
void Del(int iNum)
{
auto it = m_setHas.find(iNum);
if (m_setHas.end() == it)
{
return;
}
m_setHas.erase(it);
C2BNumTrieNode* p = m_pRoot;
for (int i = iLeveNum - 1; i >= 0; i–)
{
p->m_iNum–;
bool bRight = iNum & (1 << i);
p = p->m_childs[bRight];
}
p->m_iNum–;
}
int MaxXor(int iNum)
{
C2BNumTrieNode* p = m_pRoot;
int iRet = 0;
for (int i = iLeveNum - 1; i >= 0; i–)
{
bool bRight = !(iNum & (1 << i));
bool bSel = p->GetNot0Child(bRight);
p = p->m_childs[bSel];
if (bSel == bRight)
{
iRet |= (1 << i);
}
}
return iRet;
}
C2BNumTrieNode* m_pRoot;
std::unordered_multiset m_setHas;
};

struct SValueItem
{
SValueItem()
{

}
SValueItem(int iValue)
{m_iCoefficient = iValue;
}
SValueItem operator*(const SValueItem& o)const
{SValueItem ret(m_iCoefficient * o.m_iCoefficient);int i = 0, j = 0;while ((i < m_vVars.size()) && (j < o.m_vVars.size())){if (m_vVars[i] < o.m_vVars[j]){ret.m_vVars.emplace_back(m_vVars[i]);i++;}else{ret.m_vVars.emplace_back(o.m_vVars[j]);j++;}}ret.m_vVars.insert(ret.m_vVars.end(), m_vVars.begin() + i, m_vVars.end());ret.m_vVars.insert(ret.m_vVars.end(), o.m_vVars.begin() + j, o.m_vVars.end());return ret;
}
bool operator<(const SValueItem& o)const
{if (m_vVars.size() == o.m_vVars.size()){return m_vVars < o.m_vVars;}return m_vVars.size() > o.m_vVars.size();
}
vector<std::string> m_vVars;
int m_iCoefficient = 1;//系数、倍率
std::string ToString()const
{std::ostringstream os;os << m_iCoefficient;for (const auto& s : m_vVars){os << "*" << s;}return os.str();
}

};

struct SValue
{
SValue()
{

}
SValue(int iValue)
{SValueItem item;item.m_iCoefficient = iValue;m_items.emplace(item);
}
SValue(std::string strName)
{SValueItem item;item.m_vVars.emplace_back(strName);m_items.emplace(item);
}
SValue operator-(const SValue& o)const
{SValue ret;ret.m_items = m_items;for (auto it : o.m_items){ret -= it;}return ret;
}
SValue operator+(const SValue& o)const
{SValue ret;ret.m_items = m_items;for (auto it : o.m_items){ret += it;}return ret;
}
SValue operator*(const SValue& o)const
{SValue ret;for (const auto it : m_items){for (const auto ij : o.m_items){ret += it * ij;}}return ret;
}
SValue& operator+=(const SValueItem& item)
{auto it = m_items.find(item);if (m_items.end() == it){m_items.emplace(item);}else{auto tmp = *it;tmp.m_iCoefficient += item.m_iCoefficient;m_items.erase(it);m_items.emplace(tmp);}return *this;
}
SValue& operator-=(const SValueItem& item)
{auto it = m_items.find(item);if (m_items.end() == it){auto tmp = item;tmp.m_iCoefficient *= -1;m_items.emplace(tmp);}else{auto tmp = *it;tmp.m_iCoefficient -= item.m_iCoefficient;m_items.erase(it);m_items.emplace(tmp);}return *this;
}
vector<std::string> ToStrings()const
{vector<std::string> vRet;for (const auto& item : m_items){if (0 == item.m_iCoefficient){continue;}vRet.emplace_back(item.ToString());}return vRet;
}
std::set<SValueItem> m_items;

};

class CDelIndexs
{
public:
CDelIndexs()
{

}
CDelIndexs(int iSize)
{Init(iSize);
}
void Init(int iSize)
{m_bDels.assign(iSize, false);m_vNext.resize(iSize);for (int i = 0; i < iSize; i++){m_vNext[i] = i + 1;}
}
void Del(int index)
{if ((index < 0) || (index >= m_vNext.size())){return;}if (m_bDels[index]){return;}m_bDels[index] = true;}
void SetCur(int index)
{if (index < 0){m_iCur = m_vNext.size();}else{m_iCur = FreshCur(index);}
}
int NextIndex()
{if (m_iCur >= m_vNext.size()){return -1;}auto ret = m_iCur;SetCur(m_vNext[m_iCur]);return ret;
}

private:
int FreshCur(int index)
{
if (index >= m_vNext.size())
{
return m_vNext.size();
}
if (!m_bDels[index])
{
return index;
}

	return m_vNext[index] = FreshCur(m_vNext[index]);
}
int m_iCur = 0;
vector<bool> m_bDels;
vector<int> m_vNext;

};

class CUnionFind
{
public:
CUnionFind(int iSize) :m_vNodeToRegion(iSize)
{
for (int i = 0; i < iSize; i++)
{
m_vNodeToRegion[i] = i;
}
m_iConnetRegionCount = iSize;
}
int GetConnectRegionIndex(int iNode)
{
int& iConnectNO = m_vNodeToRegion[iNode];
if (iNode == iConnectNO)
{
return iNode;
}
return iConnectNO = GetConnectRegionIndex(iConnectNO);
}
void Union(int iNode1, int iNode2)
{
const int iConnectNO1 = GetConnectRegionIndex(iNode1);
const int iConnectNO2 = GetConnectRegionIndex(iNode2);
if (iConnectNO1 == iConnectNO2)
{
return;
}
m_iConnetRegionCount–;
if (iConnectNO1 > iConnectNO2)
{
UnionConnect(iConnectNO1, iConnectNO2);
}
else
{
UnionConnect(iConnectNO2, iConnectNO1);
}
}

bool IsConnect(int iNode1, int iNode2)
{return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);
}
int GetConnetRegionCount()const
{return m_iConnetRegionCount;
}
vector<int> GetNodeCountOfRegion()//各联通区域的节点数量
{const int iNodeSize = m_vNodeToRegion.size();vector<int> vRet(iNodeSize);for (int i = 0; i < iNodeSize; i++){vRet[GetConnectRegionIndex(i)]++;}return vRet;
}

private:
void UnionConnect(int iFrom, int iTo)
{
m_vNodeToRegion[iFrom] = iTo;
}
vector m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引
int m_iConnetRegionCount;
};

class CUnionFindMST
{
public:
CUnionFindMST(const int iNodeSize) :m_uf(iNodeSize)
{

}
void AddEdge(const int iNode1, const int iNode2, int iWeight)
{if (m_uf.IsConnect(iNode1, iNode2)){return;}m_iMST += iWeight;m_uf.Union(iNode1, iNode2);
}
void AddEdge(const vector<int>& v)
{AddEdge(v[0], v[1], v[2]);
}
int MST()
{if (m_uf.GetConnetRegionCount() > 1){return -1;}return m_iMST;
}

private:
int m_iMST = 0;
CUnionFind m_uf;
};

class CNearestMST
{
public:
CNearestMST(const int iNodeSize) :m_bDo(iNodeSize), m_vDis(iNodeSize, INT_MAX), m_vNeiTable(iNodeSize)
{

}
void Init(const vector<vector<int>>& edges)
{for (const auto& v : edges){Add(v);}
}
void Add(const vector<int>& v)
{m_vNeiTable[v[0]].emplace_back(v[1], v[2]);m_vNeiTable[v[1]].emplace_back(v[0], v[2]);
}
int MST(int start)
{int next = start;while ((next = AddNode(next)) >= 0);return m_iMST;
}
int MST(int iNode1, int iNode2, int iWeight)
{m_bDo[iNode1] = true;for (const auto& it : m_vNeiTable[iNode1]){if (m_bDo[it.first]){continue;}m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);}m_iMST = iWeight;int next = iNode2;while ((next = AddNode(next)) >= 0);return m_iMST;
}

private:
int AddNode(int iCur)
{
m_bDo[iCur] = true;
for (const auto& it : m_vNeiTable[iCur])
{
if (m_bDo[it.first])
{
continue;
}
m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);
}

	int iMinIndex = -1;for (int i = 0; i < m_vDis.size(); i++){if (m_bDo[i]){continue;}if ((-1 == iMinIndex) || (m_vDis[i] < m_vDis[iMinIndex])){iMinIndex = i;}}if (-1 != iMinIndex){if (INT_MAX == m_vDis[iMinIndex]){m_iMST = -1;return -1;}m_iMST += m_vDis[iMinIndex];}return iMinIndex;
}
vector<bool> m_bDo;
vector<long long> m_vDis;
vector < vector<std::pair<int, int>>> m_vNeiTable;
long long m_iMST = 0;

};

typedef pair<long long, int> PAIRLLI;
class CDis
{
public:
static void Dis(vector& vDis, int start, const vector<vector<pair<int, int>>>& vNeiB)
{
std::priority_queue<PAIRLLI, vector, greater> minHeap;
minHeap.emplace(0, start);
while (minHeap.size())
{
const long long llDist = minHeap.top().first;
const int iCur = minHeap.top().second;
minHeap.pop();
if (-1 != vDis[iCur])
{
continue;
}
vDis[iCur] = llDist;
for (const auto& it : vNeiB[iCur])
{
minHeap.emplace(llDist + it.second, it.first);
}
}

}

};

class CNearestDis
{
public:
CNearestDis(int iSize) :m_iSize(iSize), DIS(m_vDis), PRE(m_vPre)
{

}
void Cal(int start, const vector<vector<pair<int, int>>>& vNeiB)
{m_vDis.assign(m_iSize, -1);m_vPre.assign(m_iSize, -1);vector<bool> vDo(m_iSize);//点是否已处理auto AddNode = [&](int iNode){//const int iPreNode = m_vPre[iNode];long long llPreDis = m_vDis[iNode];vDo[iNode] = true;for (const auto& it : vNeiB[iNode]){if (vDo[it.first]){continue;}if ((-1 == m_vDis[it.first]) || (it.second + llPreDis < m_vDis[it.first])){m_vDis[it.first] = it.second + llPreDis;m_vPre[it.first] = iNode;}}long long llMinDis = LLONG_MAX;int iMinIndex = -1;for (int i = 0; i < m_vDis.size(); i++){if (vDo[i]){continue;}if (-1 == m_vDis[i]){continue;}if (m_vDis[i] < llMinDis){iMinIndex = i;llMinDis = m_vDis[i];}}return (LLONG_MAX == llMinDis) ? -1 : iMinIndex;};int next = start;m_vDis[start] = 0;while (-1 != (next = AddNode(next)));
}
void Cal(const int start, vector<vector<int>>& edges)
{vector<vector<pair<int, int>>> vNeiB(m_iSize);for (int i = 0; i < edges.size(); i++){const auto& v = edges[i];vNeiB[v[0]].emplace_back(v[1], v[2]);vNeiB[v[1]].emplace_back(v[0], v[2]);}Cal(start, vNeiB);
}
const vector<long long>& DIS;
const vector<int>& PRE;

private:
const int m_iSize;
vector m_vDis;//各点到起点的最短距离
vector m_vPre;//最短路径的前一点
};

class CNeiBo2
{
public:
CNeiBo2(int n, vector<vector>& edges, bool bDirect)
{
m_vNeiB.resize(n);
for (const auto& v : edges)
{
m_vNeiB[v[0]].emplace_back(v[1]);
if (!bDirect)
{
m_vNeiB[v[1]].emplace_back(v[0]);
}
}
}
vector<vector> m_vNeiB;
};

struct SDecimal
{
SDecimal(int iNum = 0, int iDeno = 1)
{
m_iNum = iNum;
m_iDeno = iDeno;
int iGCD = GCD(abs(m_iNum), abs(m_iDeno));
m_iNum /= iGCD;
m_iDeno /= iGCD;
if (m_iDeno < 0)
{
m_iDeno = -m_iDeno;
m_iNum = -m_iNum;
}
}
SDecimal operator*(const SDecimal& o)const
{
return SDecimal(m_iNum * o.m_iNum, m_iDeno * o.m_iDeno);
}
SDecimal operator/(const SDecimal& o)const
{
return SDecimal(m_iNum * o.m_iDeno, m_iDeno * o.m_iNum);
}
SDecimal operator+(const SDecimal& o)const
{
const int iGCD = GCD(m_iDeno, o.m_iDeno);
const int iDeno = m_iDeno * o.m_iDeno / iGCD;
return SDecimal(m_iNum * (iDeno / m_iDeno) + o.m_iNum * (iDeno / o.m_iDeno), iDeno);
}
SDecimal operator-(const SDecimal& o)const
{
const int iGCD = GCD(m_iDeno, o.m_iDeno);
const int iDeno = m_iDeno * o.m_iDeno / iGCD;
return SDecimal(m_iNum * (iDeno / m_iDeno) - o.m_iNum * (iDeno / o.m_iDeno), iDeno);
}
bool operator==(const SDecimal& o)const
{
return (m_iNum == o.m_iNum) && (m_iDeno == o.m_iDeno);
}
bool operator<(const SDecimal& o)const
{
auto tmp = *this - o;
return tmp.m_iNum < 0;
}
int m_iNum = 0;//分子
int m_iDeno = 1;//分母
};

struct point {
double x, y;
point(double i, double j) :x(i), y(j) {}
};

//算两点距离
double dist(double x1, double y1, double x2, double y2) {
return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}

//计算圆心
point CircleCenter(point& a, point& b, int r) {
//算中点
point mid((a.x + b.x) / 2.0, (a.y + b.y) / 2.0);
//AB距离的一半
double d = dist(a.x, a.y, mid.x, mid.y);
//计算h
double h = sqrt(r * r - d * d);
//计算垂线
point ba(b.x - a.x, b.y - a.y);
point hd(-ba.y, ba.x);
double len = sqrt(hd.x * hd.x + hd.y * hd.y);
hd.x /= len, hd.y /= len;
hd.x *= h, hd.y *= h;
return point(hd.x + mid.x, hd.y + mid.y);
}

class C01LineTree
{
public:
C01LineTree(const vector& nums) :m_iEleSize(nums.size())
{
m_arr.resize(m_iEleSize * 4);
Init(nums, 1, 1, m_iEleSize);
m_vNeedFreshChilds.assign(m_iEleSize * 4, false);
}
void Rotato(int iLeftZeroIndex, int iRightZeroIndex)
{
int iRotatoLeft = iLeftZeroIndex + 1;
int iRotatoRight = iRightZeroIndex + 1;
Rotato(1, 1, m_iEleSize, iRotatoLeft, iRotatoRight);
}
int Query()
{
return m_arr[1];
}
private:
void Rotato(int iSaveIndex, int iDataBegin, int iDataEnd, int iRotatoLeft, int iRotatoRight)
{
if ((iRotatoLeft <= iDataBegin) && (iRotatoRight >= iDataEnd))
{//整个范围需要更新
RotatoSelf(iSaveIndex, iDataBegin, iDataEnd);
return;
}
int iMid = iDataBegin + (iDataEnd - iDataBegin) / 2;
if (m_vNeedFreshChilds[iSaveIndex])
{
RotatoSelf(iSaveIndex * 2, iDataBegin, iMid);
RotatoSelf(iSaveIndex * 2 + 1, iMid + 1, iDataEnd);
m_vNeedFreshChilds[iSaveIndex] = false;
}
if (iMid >= iRotatoLeft)
{
Rotato(iSaveIndex * 2, iDataBegin, iMid, iRotatoLeft, iRotatoRight);
}
if (iMid + 1 <= iRotatoRight)
{
Rotato(iSaveIndex * 2 + 1, iMid + 1, iDataEnd, iRotatoLeft, iRotatoRight);
}
m_arr[iSaveIndex] = m_arr[iSaveIndex * 2] + m_arr[iSaveIndex * 2 + 1];
}
void RotatoSelf(int iSaveIndex, int iDataBegin, int iDataEnd)
{
//总数量 - 翻转后0(翻转前1)的数量
m_arr[iSaveIndex] = (iDataEnd - iDataBegin + 1) - m_arr[iSaveIndex];
//懒惰法,标记本节点的子孙节点没更新
m_vNeedFreshChilds[iSaveIndex] = !m_vNeedFreshChilds[iSaveIndex];
}
void Init(const vector& nums, int iSaveIndex, int iDataBegin, int iDataEnd)
{
if (iDataBegin == iDataEnd)
{
m_arr[iSaveIndex] = nums[iDataBegin - 1];
return;
}
int iMid = iDataBegin + (iDataEnd - iDataBegin) / 2;
Init(nums, iSaveIndex * 2, iDataBegin, iMid);
Init(nums, iSaveIndex * 2 + 1, iMid + 1, iDataEnd);
m_arr[iSaveIndex] = m_arr[iSaveIndex * 2] + m_arr[iSaveIndex * 2 + 1];
}
const int m_iEleSize;
vector m_arr;
vector m_vNeedFreshChilds;
};

/*
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
TreeNode(int x, int iLeft) : val(x), left(new TreeNode(iLeft)), right(nullptr) {}
TreeNode(int x, int iLeft, int iRghit) : val(x), left(new TreeNode(iLeft)), right(new TreeNode(iRghit)) {}
};

namespace NTree
{
TreeNode* Init(const vector& nums, int iNull = 10000)
{
if (0 == nums.size())
{
return nullptr;
}
vector<TreeNode*> ptrs(nums.size() + 1), ptrParent(1);
for (int i = 0; i < nums.size(); i++)
{
if (iNull == nums[i])
{
continue;
}
const int iNO = i + 1;
ptrs[iNO] = new TreeNode(nums[i]);
ptrParent.emplace_back(ptrs[iNO]);
if (1 == iNO)
{
continue;
}
if (iNO & 1)
{//奇数是右支
ptrParent[iNO / 2]->right = ptrs[iNO];
}
else
{
ptrParent[iNO / 2]->left = ptrs[iNO];
}
}
return ptrs[1];
}
}
*/

class Solution {
public:
int minNumberOfSemesters(int n, vector<vector>& relations, int k) {
m_iMaskNum = 1 << n;
vector dp(m_iMaskNum,1000*1000),vPre(m_iMaskNum);
for (const auto& v : relations)
{
vPre[1 << (v[1] - 1)] |= (1 << (v[0] - 1));
}
dp[0] = 0;
for (int i = 0; i < m_iMaskNum; i++)
{
vPre[i] = vPre[i & (-i)] | vPre[i & (i - 1)];
if ((i | vPre[i]) != i)
{
continue;//非发课程:前置课程没学
}
unsigned int uCanStudy = vPre[i] ^ i;
if (bitcount(uCanStudy) <= k)
{
dp[i ] = min(dp[i ], dp[i- uCanStudy] + 1);
continue;
}
for (unsigned int uStudy = uCanStudy; uStudy; uStudy = uCanStudy & (uStudy - 1))
{
if (bitcount(uStudy) <= k)
{
dp[i] = min(dp[i ], dp[i - uStudy] + 1);
}
}
}
return dp.back();
}
int m_iMaskNum;
};
.

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【动态规划】【状态压缩】【2次选择】【广度搜索】1494. 并行课程 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680847

相关文章

如何选择适合孤独症兄妹的学校?

在探索适合孤独症儿童教育的道路上,每一位家长都面临着前所未有的挑战与抉择。当这份责任落在拥有孤独症兄妹的家庭肩上时,选择一所能够同时满足两个孩子特殊需求的学校,更显得尤为关键。本文将探讨如何为这样的家庭做出明智的选择,并介绍星贝育园自闭症儿童寄宿制学校作为一个值得考虑的选项。 理解孤独症儿童的独特性 孤独症,这一复杂的神经发育障碍,影响着儿童的社交互动、沟通能力以及行为模式。对于拥有孤独症兄

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

hdu1565(状态压缩)

本人第一道ac的状态压缩dp,这题的数据非常水,很容易过 题意:在n*n的矩阵中选数字使得不存在任意两个数字相邻,求最大值 解题思路: 一、因为在1<<20中有很多状态是无效的,所以第一步是选择有效状态,存到cnt[]数组中 二、dp[i][j]表示到第i行的状态cnt[j]所能得到的最大值,状态转移方程dp[i][j] = max(dp[i][j],dp[i-1][k]) ,其中k满足c

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同