Python3 爬虫实战 — 前程无忧招聘信息爬取 + 数据可视化

本文主要是介绍Python3 爬虫实战 — 前程无忧招聘信息爬取 + 数据可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


  • 爬取时间:2020-07-11(2020年10月测试,增加了反爬,此代码已失效!!!)
  • 实现目标:根据用户输入的关键字爬取相关职位信息存入 MongoDB,读取数据进行可视化展示。
  • 涉及知识:请求库 requests、Xpath 语法、数据库 MongoDB、数据处理 Numpy、Pandas、数据可视化 Matplotlib。
  • 完整代码:https://github.com/TRHX/Python3-Spider-Practice/tree/master/SpiderDataVisualization/51job
  • 其他爬虫实战代码合集(持续更新):https://github.com/TRHX/Python3-Spider-Practice
  • 爬虫实战专栏(持续更新):https://itrhx.blog.csdn.net/article/category/9351278

文章目录

    • 【1x00】获取数据 get_51job_data.py
      • 【01x01】构建请求地址
      • 【01x02】获取总页数
      • 【01x03】提取详情页 URL
      • 【01x04】提取职位信息
      • 【01x05】保存数据到 MongoDB
    • 【2x00】数据可视化 draw_bar_chart.py
      • 【02x01】数据初处理
      • 【02x02】数据清洗
      • 【02x03】绘制经验与平均薪资关系图
      • 【02x04】绘制学历与平均薪资关系图
    • 【3x00】数据截图
    • 【4x00】完整代码


【1x00】获取数据 get_51job_data.py

【01x01】构建请求地址

以 Python 职位为例,请求地址如下:

第一页:https://search.51job.com/list/000000,000000,0000,00,9,99,python,2,1.html

第二页:https://search.51job.com/list/000000,000000,0000,00,9,99,python,2,2.html

第三页:https://search.51job.com/list/000000,000000,0000,00,9,99,python,2,3.html

初始化函数:

    def __init__(self):self.base_url = 'https://search.51job.com/list/000000,000000,0000,00,9,99,%s,2,%s.html'self.headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.13 Safari/537.36'}self.keyword = input('请输入关键字:')

【01x02】获取总页数

在页面的下方给出了该职位一共有多少页,使用 Xpath 和正则表达式提取里面的数字,方便后面翻页爬取使用,注意页面编码为 gbk

01

    def tatal_url(self):url = self.base_url % (self.keyword, str(1))response = requests.get(url=url, headers=self.headers)tree = etree.HTML(response.content.decode('gbk'))# 提取一共有多少页text = tree.xpath("//div[@class='p_in']/span[1]/text()")[0]number = re.findall('[0-9]', text)number = int(''.join(number))print('%s职位共有%d页' % (self.keyword, number))return number

【01x03】提取详情页 URL

定义一个 detail_url() 方法,传入总页数,循环提取每一页职位详情页的 URL,将每一个详情页 URL 传递给 parse_data() 方法,用于解析详情页内的具体职位信息。

提取详情页时有以下几种特殊情况:

特殊情况一:如果有前程无忧自己公司的职位招聘信息掺杂在里面,他的详情页结构和普通的不一样,页面编码也有差别。

页面示例:https://51rz.51job.com/job.html?jobid=115980776

页面真实数据请求地址类似于:https://coapi.51job.com/job_detail.php?jsoncallback=&key=&sign=params={“jobid”:""}

请求地址中的各参数值通过 js 加密:https://js.51jobcdn.com/in/js/2018/coapi/coapi.min.js

02
03

特殊情况二:部分公司有自己的专属页面,此类页面的结构也不同于普通页面

页面示例:http://dali.51ideal.com/jobdetail.html?jobid=121746338

04
05

为了规范化,本次爬取将去掉这部分特殊页面,仅爬取 URL 带有 jobs.51job.com 的数据

    def detail_url(self, number):for num in range(1, number+1):url = self.base_url % (self.keyword, str(num))response = requests.get(url=url, headers=self.headers)tree = etree.HTML(response.content.decode('gbk'))detail_url1 = tree.xpath("//div[@class='dw_table']/div[@class='el']/p/span/a/@href")"""深拷贝一个 url 列表,如果有连续的不满足要求的链接,若直接在原列表里面删除,则会漏掉一些链接,因为每次删除后的索引已改变,因此在原列表中提取不符合元素后,在深拷贝的列表里面进行删除。最后深拷贝的列表里面的元素均符合要求。"""detail_url2 = copy.deepcopy(detail_url1)for url in detail_url1:if 'jobs.51job.com' not in url:detail_url2.remove(url)self.parse_data(detail_url2)print('第%d页数据爬取完毕!' % num)time.sleep(2)print('所有数据爬取完毕!')

【01x04】提取职位信息

解析详情页时页面编码是 gbk,但是某些页面在解析时仍然会报编码错误,因此使用 try-except 语句捕捉编码错误(UnicodeDecodeError),如果该页面有编码错误则直接 return 结束函数。

    def parse_data(self, urls):"""position:            职位wages:               工资region:              地区experience:          经验education:           学历need_people:         招聘人数publish_date:        发布时间english:             英语要求welfare_tags:        福利标签job_information:     职位信息work_address:        上班地址company_name:        公司名称company_nature:      公司性质company_scale:       公司规模company_industry:    公司行业company_information: 公司信息"""for url in urls:response = requests.get(url=url, headers=self.headers)try:text = response.content.decode('gbk')except UnicodeDecodeError:returntree = etree.HTML(text)"""提取内容时使用 join 方法将列表转为字符串,而不是直接使用索引取值,这样做的好处是遇到某些没有的信息直接留空而不会报错"""position = ''.join(tree.xpath("//div[@class='cn']/h1/text()"))wages = ''.join(tree.xpath("//div[@class='cn']/strong/text()"))# 经验、学历、招聘人数、发布时间等信息都在一个标签里面,逐一使用列表解析式提取content = tree.xpath("//div[@class='cn']/p[2]/text()")content = [i.strip() for i in content]if content:region = content[0]else:region = ''experience = ''.join([i for i in content if '经验' in i])education = ''.join([i for i in content if i in '本科大专应届生在校生硕士'])need_people = ''.join([i for i in content if '招' in i])publish_date = ''.join([i for i in content if '发布' in i])english = ''.join([i for i in content if '英语' in i])welfare_tags = ','.join(tree.xpath("//div[@class='jtag']/div//text()")[1:-2])job_information = ''.join(tree.xpath("//div[@class='bmsg job_msg inbox']/p//text()")).replace(' ', '')work_address = ''.join(tree.xpath("//div[@class='bmsg inbox']/p//text()"))company_name = ''.join(tree.xpath("//div[@class='tCompany_sidebar']/div[1]/div[1]/a/p/text()"))company_nature = ''.join(tree.xpath("//div[@class='tCompany_sidebar']/div[1]/div[2]/p[1]//text()"))company_scale = ''.join(tree.xpath("//div[@class='tCompany_sidebar']/div[1]/div[2]/p[2]//text()"))company_industry = ''.join(tree.xpath("//div[@class='tCompany_sidebar']/div[1]/div[2]/p[3]/@title"))company_information = ''.join(tree.xpath("//div[@class='tmsg inbox']/text()"))job_data = [position, wages, region, experience, education, need_people, publish_date,english, welfare_tags, job_information, work_address, company_name,company_nature, company_scale, company_industry, company_information]save_mongodb(job_data)

【01x05】保存数据到 MongoDB

指定一个名为 job51_spider 的数据库和一个名为 data 的集合,依次将信息保存至 MongoDB。

def save_mongodb(data):client = pymongo.MongoClient(host='localhost', port=27017)db = client.job51_spidercollection = db.datasave_data = {'职位': data[0],'工资': data[1],'地区': data[2],'经验': data[3],'学历': data[4],'招聘人数': data[5],'发布时间': data[6],'英语要求': data[7],'福利标签': data[8],'职位信息': data[9],'上班地址': data[10],'公司名称': data[11],'公司性质': data[12],'公司规模': data[13],'公司行业': data[14],'公司信息': data[15]}collection.insert_one(save_data)

【2x00】数据可视化 draw_bar_chart.py

【02x01】数据初处理

从 MongoDB 里面读取数据为 DataFrame 对象,本次可视化只分析工资与经验、学历的关系,所以只取这三项,由于获取的数据有些是空白值,因此使用 replace 方法将空白值替换成缺失值(NaN),然后使用 DataFrame 对象的 dropna() 方法删除带有缺失值(NaN)的行。将工资使用 apply 方法,将每个值应用于 wish_data 方法,即对每个值进行清洗。

def processing_data():# 连接数据库,从数据库读取数据(也可以导出后从文件中读取)client = pymongo.MongoClient(host='localhost', port=27017)db = client.job51_spidercollection = db.data# 读取数据并转换为 DataFrame 对象data = pd.DataFrame(list(collection.find()))data = data[['工资', '经验', '学历']]# 使用正则表达式选择空白的字段并填充为缺失值,然后删除带有缺失值的所有行data.replace(to_replace=r'^\s*$', value=np.nan, regex=True, inplace=True)data = data.dropna()# 对工资数据进行清洗,处理后的工作单位:元/月data['工资'] = data['工资'].apply(wish_data)return data

【02x02】数据清洗

def wish_data(wages_old):"""数据清洗规则:分为元/天,千(以上/下)/月,万(以上/下)/月,万(以上/下)/年若数据是一个区间的,则求其平均值,最后的值统一单位为元/月"""if '元/天' in wages_old:if '-' in wages_old.split('元')[0]:wages1 = wages_old.split('元')[0].split('-')[0]wages2 = wages_old.split('元')[0].split('-')[1]wages_new = (float(wages2) + float(wages1)) / 2 * 30else:wages_new = float(wages_old.split('元')[0]) * 30return wages_newelif '千/月' in wages_old or '千以下/月' in wages_old or '千以上/月' in wages_old:if '-' in wages_old.split('千')[0]:wages1 = wages_old.split('千')[0].split('-')[0]wages2 = wages_old.split('千')[0].split('-')[1]wages_new = (float(wages2) + float(wages1)) / 2 * 1000else:wages_new = float(wages_old.split('千')[0]) * 1000return wages_newelif '万/月' in wages_old or '万以下/月' in wages_old or '万以上/月' in wages_old:if '-' in wages_old.split('万')[0]:wages1 = wages_old.split('万')[0].split('-')[0]wages2 = wages_old.split('万')[0].split('-')[1]wages_new = (float(wages2) + float(wages1)) / 2 * 10000else:wages_new = float(wages_old.split('万')[0]) * 10000return wages_newelif '万/年' in wages_old or '万以下/年' in wages_old or '万以上/年' in wages_old:if '-' in wages_old.split('万')[0]:wages1 = wages_old.split('万')[0].split('-')[0]wages2 = wages_old.split('万')[0].split('-')[1]wages_new = (float(wages2) + float(wages1)) / 2 * 10000 / 12else:wages_new = float(wages_old.split('万')[0]) * 10000 / 12return wages_new

【02x03】绘制经验与平均薪资关系图

def wages_experience_chart(data):# 根据经验分类,求不同经验对应的平均薪资wages_experience = data.groupby('经验').mean()# 获取经验和薪资的值,将其作为画图的 x 和 y 数据w = wages_experience['工资'].index.valuese = wages_experience['工资'].values# 按照经验对数据重新进行排序,薪资转为 int 类型(也可以直接在前面对 DataFrame 按照薪资大小排序)wages = [w[6], w[1], w[2], w[3], w[4], w[5], w[0]]experience = [int(e[6]), int(e[1]), int(e[2]), int(e[3]), int(e[4]), int(e[5]), int(e[0])]# 绘制柱状图plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']plt.figure(figsize=(9, 6))x = wagesy = experiencecolor = ['#E41A1C', '#377EB8', '#4DAF4A', '#984EA3', '#FF7F00', '#FFFF33', '#A65628']plt.bar(x, y, color=color)for a, b in zip(x, y):plt.text(a, b, b, ha='center', va='bottom')plt.title('Python 相关职位经验与平均薪资关系', fontsize=13)plt.xlabel('经验', fontsize=13)plt.ylabel('平均薪资(元 / 月)', fontsize=13)plt.savefig('wages_experience_chart.png')plt.show()

09

【02x04】绘制学历与平均薪资关系图

def wages_education_chart(data):# 根据学历分类,求不同学历对应的平均薪资wages_education = data.groupby('学历').mean()# 获取学历和薪资的值,将其作为画图的 x 和 y 数据wages = wages_education['工资'].index.valueseducation = [int(i) for i in wages_education['工资'].values]# 绘制柱状图plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']plt.figure(figsize=(9, 6))x = wagesy = educationcolor = ['#E41A1C', '#377EB8', '#4DAF4A']plt.bar(x, y, color=color)for a, b in zip(x, y):plt.text(a, b, b, ha='center', va='bottom')plt.title('Python 相关职位学历与平均薪资关系', fontsize=13)plt.xlabel('学历', fontsize=13)plt.ylabel('平均薪资(元 / 月)', fontsize=13)plt.savefig('wages_education_chart.png')plt.show()

10

【3x00】数据截图

一共有 34009 条数据,完整数据已放在 github,可自行下载。

MongoDB:

06

CSV 文件:

07

JSON 文件:

08

【4x00】完整代码

完整代码地址(点亮 star 有 buff 加成):https://github.com/TRHX/Python3-Spider-Practice/tree/master/SpiderDataVisualization/51job

其他爬虫实战代码合集(持续更新):https://github.com/TRHX/Python3-Spider-Practice

爬虫实战专栏(持续更新):https://itrhx.blog.csdn.net/article/category/9351278

这篇关于Python3 爬虫实战 — 前程无忧招聘信息爬取 + 数据可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680399

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount