文心一言 VS 讯飞星火 VS chatgpt (193)-- 算法导论14.3 1题

2024-02-04 06:28

本文主要是介绍文心一言 VS 讯飞星火 VS chatgpt (193)-- 算法导论14.3 1题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、用go语言,写出作用于区间树的结点且在 〇(1) 时间内更新 max 属性的过程 LEFT-ROTATE 的伪代码。

文心一言:

以下是一个简单的LEFT-ROTATE的伪代码,它对一个二叉搜索树进行左旋转操作。这个操作的作用是更新节点的max属性,使其在O(1)时间内完成。

LEFT-ROTATE(T, x):  // T 是树,x 是需要左旋转的节点  y := x.right  x.right := y.left  y.left = x  T.root = y
LEFT-ROTATE的伪代码解释:

首先,记录需要左旋转的节点x的右子节点为y。
然后,将节点x的右子节点指向y的左子节点。
接着,将节点y的左子节点指向节点x。
最后,将整个树T的根节点指向节点y,完成左旋转操作。

在这里插入图片描述

讯飞星火:

在Go语言中,我们可以定义一个结构体来表示区间树的节点。每个节点都有一个max属性,表示该节点及其所有子节点中的最大值。

以下是LEFT-ROTATE操作的伪代码:

type Node struct {max intleft *Noderight *Node
}func LeftRotate(node *Node) {// 创建一个新的节点r,使其成为x的右子节点,并将y的左子节点赋给r的右子节点r := node.rightnode.right = r.leftr.left = node// 更新节点的值node.max = max(node.left.max, node.right.max)r.max = max(r.left.max, r.right.max)
}func max(a, b int) int {if a > b {return a}return b
}

在这个伪代码中,我们首先将节点的右子节点保存在变量r中,然后将r的左子节点设置为节点的右子节点。然后我们将节点设置为r的左子节点。最后,我们更新节点和r的max属性。

在这里插入图片描述

在这里插入图片描述

360智脑:

以下是 Go 语言实现的区间树节点 LEFT-ROTATE 操作的伪代码:

type IntervalTreeNode struct {LeftChild  *IntervalTreeNodeRightChild *IntervalTreeNodeMax        int// 其他属性
}
func LeftRotate(node *IntervalTreeNode) {// 获取右子节点rightChild := node.RightChild// 获取右子节点的左子节点leftChild := rightChild.LeftChild// 将右子节点的左子节点设置为当前节点的左子节点rightChild.LeftChild = node// 将当前节点的右子节点设置为左子节点的右子节点node.RightChild = leftChild// 更新当前节点的最大值为左右子节点的最大值node.Max = max(node.LeftChild.Max, node.RightChild.Max)// 更新右子节点的最大值为左右子节点的最大值rightChild.Max = max(rightChild.LeftChild.Max, rightChild.RightChild.Max)
}
func max(a, b int) int {if a > b {return a}return b
}

注意,以上代码仅为示例,具体实现可能需要根据实际需求进行调整。

在这里插入图片描述

在这里插入图片描述

智谱清言:

在设计用于区间树(Interval Tree)的数据结构时,每个节点通常会包含区间信息和一些辅助信息,比如最大值(max)。为了保证操作的效率,区间树通常需要支持快速的插入、删除和查询操作,并且每个操作的时间复杂度为O(log n)。

在您的问题中,您要求的是一个名为LEFT-ROTATE的过程,这个过程中会更新节点的max属性。这个过程通常用于平衡二叉搜索树(BST),比如AVL树或红黑树,但在区间树中也可能用到,尤其是当节点违反了区间树的一些性质时。

下面是一个LEFT-ROTATE过程的伪代码,它假设您有一个节点结构体,其中包含了区间的信息以及最大值(max)属性:

type Node struct {IntervalMaxValueLeft *NodeRight *Node
}
// LEFT-ROTATE 函数
func LEFT-ROTATE(x *Node) {y := x.Rightx.Right = y.Lefty.Left = x// 更新最大值if y.MaxValue > x.MaxValue {x.MaxValue = y.MaxValue}// 如果y的右子节点大于x的MaxValue,也需要更新if y.Right.MaxValue > x.MaxValue {x.MaxValue = y.Right.MaxValue}// 返回新的根节点return y
}

在这个伪代码中:

  • Interval 表示节点包含的区间类型。

  • MaxValue 是节点上的最大值属性。

  • LeftRight 是指向节点左子树和右子树的指针。

LEFT-ROTATE函数会交换x节点和它的右子节点y,并更新指针。在交换之后,x会成为y的右子节点,而y原来的右子节点成为了x的左子节点。

更新xMaxValue属性是一个关键步骤,确保在旋转后max属性仍然是正确的。这需要比较xMaxValuey以及y的右子节点的MaxValue,取三者中的最大值作为x的新MaxValue

请注意,这段伪代码是通用的,并且没有考虑具体的实现细节,比如Interval类型的定义,或者节点如何具体地存储和管理区间。在实际应用中,您可能需要根据您的具体需求对这段代码进行调整。

在这里插入图片描述

在这里插入图片描述

通义千问:

区间树(Interval Tree)和二叉搜索树(BST)不同,它的节点通常包含一个区间而不是单个值,并且设计时会维护一些附加属性来支持高效的区间查询。然而,对于区间树来说,没有直接对应的LEFT-ROTATE操作,因为旋转操作主要是在调整二叉搜索树的平衡时使用的,如在AVL树或红黑树中。

如果你的区间树实现了一个基于BST的结构,并且确实有一个max属性表示每个节点所代表区间范围的最大值,同时假设每次插入或删除区间后都需要更新相关节点及其祖先的最大值属性,那么在进行旋转操作时,必须确保max属性的正确性。

下面是一个简化的LEFT-ROTATE操作伪代码,它适用于任何类型的BST节点,包括可能存储区间的节点。在旋转过程中,我们会确保重新计算父节点和新旋转后子节点的最大值属性:

// 定义区间树节点结构,其中包含了最大值属性
Node {Interval interval; // 区间对象MaxValue maxValue; // 节点所涵盖的最大值Left, Right *Node; // 左右子节点指针
}// 左旋操作,以x为旋转轴心节点
func leftRotate(x *Node) *Node {// 获取x的右子节点作为新的根节点y := x.Right// x原来的右子节点的左子节点成为x的新右子节点x.Right = y.Left// 如果y的左子节点非空,则其父节点改为xif y.Left != nil {y.Left.Parent = x}// 更新y的父节点为x的父节点y.Parent = x.Parent// 如果x是根节点,则更新根节点为yif x.Parent == nil {root = y} else if x == x.Parent.Left { // x是其父节点的左子节点x.Parent.Left = y} else { // x是其父节点的右子节点x.Parent.Right = y}// 将x设置为y的左子节点y.Left = xx.Parent = y// 更新旋转后节点的最大值属性x.maxValue = max(x.Interval.Max(), getMaxOfSubtree(x.Left), getMaxOfSubtree(x.Right))y.maxValue = max(y.Interval.Max(), x.maxValue, getMaxOfSubtree(y.Right))return y // 返回新的子树根节点
}// 辅助函数,获取子树的最大值
func getMaxOfSubtree(node *Node) ValueType {if node == nil {return minValue // 或者根据实际情况返回某个最小值}return node.maxValue
}

这里假设max()函数用于比较并返回两个或多个数值中的最大值,而getMaxOfSubtree()是一个递归辅助函数,用于获取给定节点下整个子树的最大值。由于每个节点都已经预先计算并存储了maxValue,所以在旋转后只需重新计算涉及旋转部分的节点的最大值即可在O(1)时间内完成更新。

在这里插入图片描述

在这里插入图片描述

天工:

在 Go 语言中,我们可以使用 map 类型来表示区间树,其中 map 的 key 为区间的左端点,value 为对应的节点。在 LEFT-ROTATE 操作中,我们需要更新节点的 max 属性,这可以在 O(1) 时间内完成。

以下是一个简单的伪代码实现:

type Node struct {left   intright  intmid    intmax    int
}func LeftRotate(node *Node, left int, right int) {// 创建新的节点newNode := Node{left:   node.left,right:  node.mid,mid:    left,max:    node.max,}// 更新原节点的信息node.left = newNode.midnode.mid = right// 更新新节点的 max 属性newNode.max = updateMax(node, newNode)// 将新节点加入到 map 中tree[newNode.left] = &newNodetree[newNode.mid] = &newNode
}func updateMax(node *Node, newNode *Node) int {max := newNode.midif newNode.left > node.left {max = updateMax(node, tree[newNode.left])}if newNode.right < node.right {max = updateMax(node, tree[newNode.right])}return max
}

注意:这只是一个基本的实现,实际应用中可能需要考虑更多的细节,比如处理节点的删除、合并等操作。

在这里插入图片描述

在这里插入图片描述

灵小智:

以下是使用Go语言编写的区间树节点结构和LEFT-ROTATE的伪代码:
type Interval struct {low, high int
}type Node struct {interval       Intervalmax            intleft, right    *Node
}func updateMax(node *Node) {if node == nil {return}max := node.interval.highif node.left != nil && node.left.max > max {max = node.left.max}if node.right != nil && node.right.max > max {max = node.right.max}node.max = max
}func leftRotate(root, x *Node) *Node {y := x.rightx.right = y.lefty.left = xupdateMax(x)updateMax(y)if root == x {root = y}return y
}

请注意,这只是LEFT-ROTATE操作的伪代码示例,实际使用中还需要考虑其他边界情况和可能的错误处理。

在这里插入图片描述

在这里插入图片描述

chatgpt:

以下是用Go语言编写的区间树节点结构以及在O(1)时间内更新max属性并进行LEFT-ROTATE操作的伪代码:

package maintype Interval struct {Start int // 区间起点End   int // 区间终点Max   int // 最大值属性
}type Node struct {Interval     Interval // 区间节点Left, Right  *Node    // 左子节点和右子节点
}// 更新节点的最大值属性
func UpdateMax(node *Node) {max := node.Interval.Endif node.Left != nil && node.Left.Interval.Max > max {max = node.Left.Interval.Max}if node.Right != nil && node.Right.Interval.Max > max {max = node.Right.Interval.Max}node.Interval.Max = max
}// 左旋转操作(Left-Rotate)
func LeftRotate(root, x *Node) *Node {y := x.Right              // 获取x的右子节点yx.Right = y.Left          // 将y的左子节点作为x的右子节点if y.Left != nil {y.Left.Parent = x       // 设置x为y的左子节点的父节点 }y.Parent = x.Parent         // 设置y的父节点为x的父节点if x.Parent == nil {       // 如果x是根节点,则将y设为新的根节点root = y   } else if x == x.Parent.Left {  // 如果x是其父节点的左子节点,则将y设为其父节点的左子节点  x.Parent.Left = y      } else {                     // 如果x是其父节点的右子节点,则将y设为其父节点的右子节点 x.Parent.Right = y     }y.Left = x                // 将x设为y的左子节点x.Parent = y              // 将y设为x的父节点UpdateMax(x)             // 更新旋转后相关节点的最大值属性UpdateMax(y)return root
}func main() {// 示例代码中只包含了区间树结构和左旋转操作,你可以根据实际需求添加其他操作和方法。
}

这段代码给出了一个基本的区间树结构和LEFT-ROTATE操作,但需要注意的是,具体实现会受到数据结构和算法设计的影响。因此,在实际应用中,请根据自己的需求进行适当修改和优化。

在这里插入图片描述

在这里插入图片描述

kimi:

在区间树(Interval Tree)中,节点通常包含一个区间(通常是左端点和右端点)以及一个关联值。在进行左旋操作(LEFT-ROTATE)时,我们通常需要更新节点的 max 属性,以确保它反映了子树中的最大值。以下是一个作用于区间树节点的左旋操作的伪代码,它在 O(1) 时间内更新 max 属性:

// 假设我们有一个区间树节点结构体
type IntervalNode struct {interval [2]int // [left, right]value    intmax      int // 最大值left     *IntervalNoderight    *IntervalNode
}// LEFT-ROTATE 函数
func leftRotate(x *IntervalNode) *IntervalNode {// 保存 x 的右子节点y := x.right// 将 y 的左子节点设置为 x 的右子节点x.right = y.left// 如果 y 的左子节点不为空,更新其父指针if y.left != nil {y.left.parent = x}// 更新 y 的父指针y.parent = x.parent// 如果 x 是根节点,更新根节点if x.parent == nil {root = y} else {// 如果 x 是其父节点的左子节点if x.parent.left == x {x.parent.left = y} else {// 如果 x 是其父节点的右子节点x.parent.right = y}}// 将 y 的左子节点设置为 xy.left = x// 更新 x 的父指针x.parent = y// 更新 x 和 y 的 max 属性x.max = max(x.value, x.right.max)y.max = max(y.value, y.left.max)// 返回新的根节点return y
}// max 辅助函数
func max(a, b int) int {if a > b {return a}return b
}

在这个伪代码中,我们首先定义了一个 IntervalNode 结构体,它包含了区间树节点的所有必要信息。leftRotate 函数执行左旋操作,同时更新 xymax 属性。在旋转过程中,我们确保了 max 属性始终反映子树中的最大值。

请注意,这个伪代码假设每个节点都有一个指向其父节点的指针 parent,这在实际的区间树实现中是必要的。在实际的 Go 代码中,你可能需要根据具体的区间树实现来调整这个伪代码。

在这里插入图片描述

在这里插入图片描述

混元:

在这个伪代码中,我们将实现一个区间树的 LEFT-ROTATE 操作,该操作用于在 O(1) 时间内更新区间树的结点和 max 属性。

function LEFT-ROTATE(T, x):// 获取 x 的右子节点 yy = x.right// 如果 y 的左子节点不为空,将 x 设置为 y 的左子节点的父节点if y.left != null:y.left.parent = x// 将 y 的父节点设置为 x 的父节点y.parent = x.parent// 如果 x 的父节点为空,说明 x 是根节点,将 y 设置为根节点if x.parent == null:T.root = y// 如果 x 是其父节点的左子节点,将 y 设置为 x 父节点的左子节点else if x == x.parent.left:x.parent.left = y// 如果 x 是其父节点的右子节点,将 y 设置为 x 父节点的右子节点else:x.parent.right = y// 将 x 设置为 y 的左子节点y.left = x// 将 x 的父节点设置为 yx.parent = y// 更新 max 属性x.max = max(x.left.max, x.right.max)y.max = max(y.left.max, y.right.max)

这个伪代码实现了 LEFT-ROTATE 操作,它在 O(1) 时间内更新了区间树的结点和 max 属性。注意,这个伪代码假设了区间树的结点具有 left、right、parent 和 max 属性。

在这里插入图片描述

在这里插入图片描述

这篇关于文心一言 VS 讯飞星火 VS chatgpt (193)-- 算法导论14.3 1题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676588

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig