Adaptive NMS: Refining Pedestrian Detection in a Crowd

2024-02-03 22:38

本文主要是介绍Adaptive NMS: Refining Pedestrian Detection in a Crowd,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这两年不少人在做NMS的优化工作。NMS是检测的后处理工作,在RCNN系列算法中,会从一张图片中找出很多个候选框(可能包含物体的矩形边框),NMS就是去除冗余矩形框的过程。具体流程如下:

对于Bounding Box的列表B及其对应的置信度S,采用下面的计算方式.选择具有最大score的检测框M,将其从B集合中移除并加入到最终的检测结果D中.通常将B中剩余检测框中与M的IoU大于阈值Nt的框从B中移除.重复这个过程,直到B为空。

我们发现这个流程中阈值Nt很重要, 以前的检测工作中Nt是一个固定值, 这个不是很合理, 因为实际上存在一些物体的gt矩形框重叠(稠密物体场景), 这样NMS中很可能会把正确的框剔除掉。 那么我们会想:把这个Nt增大不就好了, 可数据集中稀疏场景下,较大的阈值会放掉一些False positive, 这样也不是我们想要的结果。 自然地, 我们想要的是这个阈值自适应的改变:稠密场景下增大, 稀疏场景下减小。

ICCV17 soft NMS的工作:

根据iou来改变检测的分数, 小于阈值时, 分数不变, 大于阈值时, 减小对应的分数。 这里的改进就是减少分数而不是完全置零。 f的具体形式可以是:

本文继续优化soft nms, 先估计场景的稠密程度(在RPN上的一个子网络):

再设置对应阈值, 根据阈值计算分数:

其实感觉变动不是很大, 但是网络不一定好调试不来。 具体网络细节没有太大兴趣了解。

小结:

a. 检测的整个流程中各个环节都有可以提升的空间, 同理其他任务也是如此, 分析这些环节中存在那些不够完善的点, 想办法改进;

b. 不用担心一定要做出多大变动才能叫创新, 科研本来就是一点点的探索, 一点改进如果是扎实的, 那么它就有自己的价值。

 

这篇关于Adaptive NMS: Refining Pedestrian Detection in a Crowd的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/675630

相关文章

时间序列|change point detection

change point detection 被称为变点检测,其基本定义是在一个序列或过程中,当某个统计特性(分布类型、分布参数)在某时间点受系统性因素而非偶然因素影响发生变化,我们就称该时间点为变点。变点识别即利用统计量或统计方法或机器学习方法将该变点位置估计出来。 Change Point Detection的类型 online 指连续观察某一随机过程,监测到变点时停止检验,不运用到

MACS bdgdiff: Differential peak detection based on paired four bedGraph files.

参考原文地址:[http://manpages.ubuntu.com/manpages/xenial/man1/macs2_bdgdiff.1.html](http://manpages.ubuntu.com/manpages/xenial/man1/macs2_bdgdiff.1.html) 文章目录 一、MACS bdgdiff 简介DESCRIPTION 二、用法

Learning Memory-guided Normality for Anomaly Detection——学习记忆引导的常态异常检测

又是一篇在自编码器框架中研究使用记忆模块的论文,可以看做19年的iccv的论文的衍生,在我的博客中对19年iccv这篇论文也做了简单介绍。韩国人写的,应该是吧,这名字听起来就像。 摘要abstract 我们解决异常检测的问题,即检测视频序列中的异常事件。基于卷积神经网络的异常检测方法通常利用代理任务(如重建输入视频帧)来学习描述正常情况的模型,而在训练时看不到异常样本,并在测试时使用重建误

REMEMBERING HISTORY WITH CONVOLUTIONAL LSTM FOR ANOMALY DETECTION——利用卷积LSTM记忆历史进行异常检测

上海科技大学的文章,上海科技大学有个组一直在做这方面的工作,好文章挺多的还有数据集。 ABSTRACT 本文解决了视频中的异常检测问题,由于异常是无界的,所以异常检测是一项极具挑战性的任务。我们通过利用卷积神经网络(CNN或ConvNet)对每一帧进行外观编码,并利用卷积长期记忆(ConvLSTM)来记忆与运动信息相对应的所有过去的帧来完成这项任务。然后将ConvNet和ConvLSTM与

COD论文笔记 ECCV2024 Just a Hint: Point-Supervised Camouflaged Object Detection

这篇论文的主要动机、现有方法的不足、拟解决的问题、主要贡献和创新点: 1. 动机 伪装物体检测(Camouflaged Object Detection, COD)旨在检测隐藏在环境中的伪装物体,这是一个具有挑战性的任务。由于伪装物体与背景的细微差别和模糊的边界,手动标注像素级的物体非常耗时,例如每张图片可能需要 60 分钟来标注。因此,作者希望通过减少标注负担,提出了一种仅依赖“点标注”的弱

COD论文笔记 Adaptive Guidance Learning for Camouflaged Object Detection

论文的主要动机、现有方法的不足、拟解决的问题、主要贡献和创新点如下: 动机: 论文的核心动机是解决伪装目标检测(COD)中的挑战性任务。伪装目标检测旨在识别和分割那些在视觉上与周围环境高度相似的目标,这对于计算机视觉来说是非常困难的任务。尽管深度学习方法在该领域取得了一定进展,但现有方法仍面临有效分离目标和背景的难题,尤其是在伪装目标与背景特征高度相似的情况下。 现有方法的不足之处: 过于

AUTOSAR Adaptive与智能汽车E/E架构发展趋势

AUTOSAR Adaptive是一个面向现代汽车应用需求的标准,特别适用于那些需要高计算能力和灵活性的应用。以下是AUTOSAR Adaptive的典型特性: 高计算能力:AUTOSAR Adaptive支持使用MPU(微处理器),这些处理器的性能与PC或智能手机中的处理器相当。这样的高计算能力是实现半自动驾驶和其他复杂功能所必需的。动态更新和管理:AUTOSAR Adaptive的架构允

Detection简记3-Region Proposal by Guided Anchoring

创新点 1.新的anchor 分布策略:Guided Anchoring 2.feature adaption module,根据潜在的anchor精调特征 总结 Guided Anchoring:流程如图所示 特征图F1接两个分支:位置预测分支产生物体可能存在的位置的概率图,形状预测分支预测物体的形状,独立于位置。根据两个分支的输出,得到anchor。 位置预测分支: 1X1的卷积+si

Attribute Recognition简记1-Video-Based Pedestrian Attribute Recognition

创新点 1.行人属性库 2.行人属性识别的RNN框架及其池化策略 总结 先看看行人属性识别RNN结构: backbone是ResNet50,输出是每一帧的空间特征。这组特征被送到两个分支,分别是空间池化和时间建模。最后两种特征拼接。然后分类(FC)。 LSTM关注帧间变化。受cvpr《Recurrent Convolutional Network for Video-Based Person

Detection简记2-DAFE-FD: Density Aware Feature Enrichment for Face Detection

创新点 1.使用密度估计模型增强检测中的特征图 总结 整个流程还是很清晰的。 conv1-3的特征图经过密度估计模块由检测器D1进行检测。 D2-4分别是四个检测器。 FFM是特征融合模块,将不同层不同大小的特征融合。 FFM网络结构如下: 首先使用1X1的卷积减少两组特征的厚度到128,然后使用双线性插值统一两组特征图的尺寸,然后相加。类似于cvpr2017的SSH。 多尺度检测器的网