李宏毅deep learning theory P1 can shallow network fit any function

2024-02-03 13:58

本文主要是介绍李宏毅deep learning theory P1 can shallow network fit any function,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

shallow的network已经可以fit any function,deep的有什么优势

deep的network和shallow训练出来的有什么不同

1. can shallow network fit any function?

 

 

用神经网络去拟合一个L-lipschitz的函数,使得最大的差值error小于epsilon,需要分L/epsilon个segment,需要L/epsilon个神经元拟合

因此对于任何L-lipschitz的函数都可以用一层hidden layer的reLU去fit

这篇关于李宏毅deep learning theory P1 can shallow network fit any function的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/674378

相关文章

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

AutoGen Function Call 函数调用解析(一)

目录 一、AutoGen Function Call 1.1 register_for_llm 注册调用 1.2 register_for_execution 注册执行 1.3 三种注册方法 1.3.1 函数定义和注册分开 1.3.2 定义函数时注册 1.3.3  register_function 函数注册 二、实例 本文主要对 AutoGen Function Call

(function() {})();只执行一次

测试例子: var xx = (function() {     (function() { alert(9) })(); alert(10)     return "yyyy";  })(); 调用: alert(xx); 在调用的时候,你会发现只弹出"yyyy"信息,并不见弹出"10"的信息!这也就是说,这个匿名函数只在立即调用的时候执行一次,这时它已经赋予了给xx变量,也就是只是

js私有作用域(function(){})(); 模仿块级作用域

摘自:http://outofmemory.cn/wr/?u=http%3A%2F%2Fwww.phpvar.com%2Farchives%2F3033.html js没有块级作用域,简单的例子: for(var i=0;i<10;i++){alert(i);}alert(i); for循环后的i,在其它语言像c、java中,会在for结束后被销毁,但js在后续的操作中仍然能访

简单的Q-learning|小明的一维世界(3)

简单的Q-learning|小明的一维世界(1) 简单的Q-learning|小明的一维世界(2) 一维的加速度世界 这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1​=−1,u2​=0,u3​=1}

简单的Q-learning|小明的一维世界(2)

上篇介绍了小明的一维世界模型 、Q-learning的状态空间、行动空间、奖励函数、Q-table、Q table更新公式、以及从Q值导出策略的公式等。最后给出最简单的一维位置世界的Q-learning例子,从给出其状态空间、行动空间、以及稠密与稀疏两种奖励函数的设置方式。下面将继续深入,GO! 一维的速度世界 这个世界,小明只能控制自己的速度,并且只能对速度进行如下三种操作:增加1、减

图神经网络框架DGL实现Graph Attention Network (GAT)笔记

参考列表: [1]深入理解图注意力机制 [2]DGL官方学习教程一 ——基础操作&消息传递 [3]Cora数据集介绍+python读取 一、DGL实现GAT分类机器学习论文 程序摘自[1],该程序实现了利用图神经网络框架——DGL,实现图注意网络(GAT)。应用demo为对机器学习论文数据集——Cora,对论文所属类别进行分类。(下图摘自[3]) 1. 程序 Ubuntu:18.04

rtklib.h : RTKLIB constants, types and function prototypes 解释

在 RTKLIB 中,rtklib.h 是一个头文件,包含了与 RTKLIB 相关的常量、类型和函数原型。以下是该头文件的一些常见内容和翻译说明: 1. 常量 (Constants) rtklib.h 中定义的常量通常包括: 系统常量: 例如,GPS、GLONASS、GALILEO 等系统的常量定义。 时间常量: 如一年、一天的秒数等。 精度常量: 如距离、速度的精度标准。 2. 类型

【大模型基础】P1 N-Gram 模型

目录 N-Gram 概述N-Gram 构建过程TokenN-Gram 实例第1步 构建实验语料库第2步 把句子分成 N 个 “Gram”第3步 计算每个 Bigram 在语料库中的词频第4步 计算出现的概率第5步 生成下一个词第6步:输入前缀,生成连续文本 上述实例完整代码N-Gram 的局限性 N-Gram 概述 N-Gram 诞生于统计学 NLP 初期,为解决词序列冗长导致的

深度学习--对抗生成网络(GAN, Generative Adversarial Network)

对抗生成网络(GAN, Generative Adversarial Network)是一种深度学习模型,由Ian Goodfellow等人在2014年提出。GAN主要用于生成数据,通过两个神经网络相互对抗,来生成以假乱真的新数据。以下是对GAN的详细阐述,包括其概念、作用、核心要点、实现过程、代码实现和适用场景。 1. 概念 GAN由两个神经网络组成:生成器(Generator)和判别器(D