AutoGen Function Call 函数调用解析(一)

2024-09-08 15:12

本文主要是介绍AutoGen Function Call 函数调用解析(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、AutoGen Function Call

1.1 register_for_llm 注册调用

1.2 register_for_execution 注册执行

1.3 三种注册方法

1.3.1 函数定义和注册分开

1.3.2 定义函数时注册

1.3.3  register_function 函数注册

二、实例


本文主要对 AutoGen Function Call 进行解析,并通过实例进行介绍。

一、AutoGen Function Call

AutoGen 支持 Function Call 功能,代理会根据 system_message 和函数描述进行调用。一个函数(工具)必须向至少两个代理注册,才能在对话中使用,一个负责调用,一个负责执行

1.1 register_for_llm 注册调用

负责调用的代理通过 register_for_llm 注册函数。

def register_for_llm(*,name: Optional[str] = None,description: Optional[str] = None,api_style: Literal["function", "tool"] = "tool") -> Callable[[F], F]

常用的参数是 name(函数名称) 和 description(函数描述)。

1.2 register_for_execution 注册执行

负责执行的代理通过 register_for_execution 注册函数。

def register_for_execution(name: Optional[str] = None) -> Callable[[F], F]

 

1.3 三种注册方法

AutoGen 支持代理三种方法注册调用和执行函数。

1.3.1 函数定义和注册分开

在定义函数后,代理分别注册函数。

from typing import Annotated, LiteralOperator = Literal["+", "-", "*", "/"]# 执行计算的函数
def calculator(a: int, b: int, operator: Annotated[Operator, "operator"]) -> int:if operator == "+":return a + belif operator == "-":return a - belif operator == "*":return a * belif operator == "/":return int(a / b)else:raise ValueError("Invalid operator")# 注册方法一
# assistant 注册函数调用
assistant.register_for_llm(name="calculator", description="A simple calculator")(calculator)# user_proxy 注册执行
user_proxy.register_for_execution(name="calculator")(calculator)

1.3.2 定义函数时注册

在定义函数时,代理注册函数。

from typing import Annotated, LiteralOperator = Literal["+", "-", "*", "/"]# 注册方法二
@user_proxy.register_for_execution()
@assistant.register_for_llm(name="calculator", description="A simple calculator")
def calculator(a: int, b: int, operator: Annotated[Operator, "operator"]) -> int:if operator == "+":return a + belif operator == "-":return a - belif operator == "*":return a * belif operator == "/":return int(a / b)else:raise ValueError("Invalid operator")

1.3.3  register_function 函数注册

通过 register_function 函数一起注册。

from typing import Annotated, LiteralOperator = Literal["+", "-", "*", "/"]def calculator(a: int, b: int, operator: Annotated[Operator, "operator"]) -> int:if operator == "+":return a + belif operator == "-":return a - belif operator == "*":return a * belif operator == "/":return int(a / b)else:raise ValueError("Invalid operator")register_function(calculator,caller=assistant,  # The assistant agent can suggest calls to the calculator.executor=user_proxy,  # The user proxy agent can execute the calculator calls.name="calculator",  # By default, the function name is used as the tool name.description="A simple calculator",  # A description of the tool.
)

二、实例

下面通过一个算数运算的实例进行说明。

from typing import Annotated, LiteralOperator = Literal["+", "-", "*", "/"]# 执行计算的函数
def calculator(a: int, b: int, operator: Annotated[Operator, "operator"]) -> int:if operator == "+":return a + belif operator == "-":return a - belif operator == "*":return a * belif operator == "/":return int(a / b)else:raise ValueError("Invalid operator")import osfrom autogen import ConversableAgent, config_list_from_json# 配置LLM
config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST",
)# 负责调用的代理
assistant = ConversableAgent(name="Assistant",system_message="You are a helpful AI assistant. ""You can help with simple calculations. ""Return 'TERMINATE' when the task is done.",llm_config={"config_list": config_list},
)# 负责执行的代理
user_proxy = ConversableAgent(name="User",llm_config=False,is_termination_msg=lambda msg: msg.get("content") is not None and "TERMINATE" in msg["content"],human_input_mode="NEVER",
)# 注册方法一
# assistant 注册函数调用
assistant.register_for_llm(name="calculator", description="A simple calculator")(calculator)# user_proxy 注册执行
user_proxy.register_for_execution(name="calculator")(calculator)'''
# 注册方法二
# register_function 支持两个代理同时注册
from autogen import register_function# Register the calculator function to the two agents.
register_function(calculator,caller=assistant,  # The assistant agent can suggest calls to the calculator.executor=user_proxy,  # The user proxy agent can execute the calculator calls.name="calculator",  # By default, the function name is used as the tool name.description="A simple calculator",  # A description of the tool.
)# 注册方法三
# 定义函数的时候注册
```
@user_proxy.register_for_execution()
@assistant.register_for_llm(name="my_function", description="This is a very useful function")
def my_function(a: Annotated[str, "description of a parameter"] = "a", b: int, c=3.14) -> str:return a + str(b * c)
```'''chat_result = user_proxy.initiate_chat(assistant, message="What is (44232 + 13312 / (232 - 32)) * 5?")

输出如下所示。

(base) D:\code\autogenstudio_images\example>python function_call.py
D:\Software\anaconda3\Lib\site-packages\paramiko\transport.py:219: CryptographyDeprecationWarning: Blowfish has been deprecated"class": algorithms.Blowfish,
User (to Assistant):What is (44232 + 13312 / (232 - 32)) * 5?-------------------------------------------------------------------------------->>>>>>>> USING AUTO REPLY...
[autogen.oai.client: 09-03 21:02:49] {329} WARNING - Model meta/llama-3.1-405b-instruct is not found. The cost will be 0. In your config_list, add field {"price" : [prompt_price_per_1k, completion_token_price_per_1k]} for customized pricing.
Assistant (to User):***** Suggested tool call (chatcmpl-tool-affd8cb937d74e0585e71a80f8b36082): calculator *****
Arguments:
{"a": 232, "b": 32, "operator": "-"}
********************************************************************************************-------------------------------------------------------------------------------->>>>>>>> EXECUTING FUNCTION calculator...
User (to Assistant):User (to Assistant):***** Response from calling tool (chatcmpl-tool-affd8cb937d74e0585e71a80f8b36082) *****
200
***************************************************************************************-------------------------------------------------------------------------------->>>>>>>> USING AUTO REPLY...
[autogen.oai.client: 09-03 21:03:11] {329} WARNING - Model meta/llama-3.1-405b-instruct is not found. The cost will be 0. In your config_list, add field {"price" : [prompt_price_per_1k, completion_token_price_per_1k]} for customized pricing.
Assistant (to User):***** Suggested tool call (chatcmpl-tool-b79bd1065ee94d228176dbc06c2a3981): calculator *****
Arguments:
{"a": 13312, "b": 200, "operator": "/"}
********************************************************************************************-------------------------------------------------------------------------------->>>>>>>> EXECUTING FUNCTION calculator...
User (to Assistant):User (to Assistant):***** Response from calling tool (chatcmpl-tool-b79bd1065ee94d228176dbc06c2a3981) *****
66
***************************************************************************************-------------------------------------------------------------------------------->>>>>>>> USING AUTO REPLY...
[autogen.oai.client: 09-03 21:06:13] {329} WARNING - Model moonshot-v1-8k is not found. The cost will be 0. In your config_list, add field {"price" : [prompt_price_per_1k, completion_token_price_per_1k]} for customized pricing.
Assistant (to User):***** Suggested tool call (calculator:0): calculator *****
Arguments:
{"a": 44232,"b": 66,"operator": "+"
}
**********************************************************-------------------------------------------------------------------------------->>>>>>>> EXECUTING FUNCTION calculator...
User (to Assistant):User (to Assistant):***** Response from calling tool (calculator:0) *****
44298
*****************************************************-------------------------------------------------------------------------------->>>>>>>> USING AUTO REPLY...
[autogen.oai.client: 09-03 21:06:17] {329} WARNING - Model meta/llama-3.1-405b-instruct is not found. The cost will be 0. In your config_list, add field {"price" : [prompt_price_per_1k, completion_token_price_per_1k]} for customized pricing.
Assistant (to User):***** Suggested tool call (chatcmpl-tool-a13b42b8e844488793527ab64b55d0ea): calculator *****
Arguments:
{"a": 44298, "b": 5, "operator": "*"}
********************************************************************************************-------------------------------------------------------------------------------->>>>>>>> EXECUTING FUNCTION calculator...
User (to Assistant):User (to Assistant):***** Response from calling tool (chatcmpl-tool-a13b42b8e844488793527ab64b55d0ea) *****
221490
***************************************************************************************-------------------------------------------------------------------------------->>>>>>>> USING AUTO REPLY...
[autogen.oai.client: 09-03 21:06:21] {329} WARNING - Model meta/llama-3.1-405b-instruct is not found. The cost will be 0. In your config_list, add field {"price" : [prompt_price_per_1k, completion_token_price_per_1k]} for customized pricing.
Assistant (to User):The answer is 221490. TERMINATE.--------------------------------------------------------------------------------

参考链接:

[1] Tool Use | AutoGen

[2] agentchat.conversable_agent | AutoGen

这篇关于AutoGen Function Call 函数调用解析(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1148460

相关文章

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决