行人重识别ReID常用Loss损失函数

2024-02-02 19:58

本文主要是介绍行人重识别ReID常用Loss损失函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

行人重识别ReID

算法的提高主要体现在损失函数的设计上,损失函数会对整个网络的优化有着导向性的作用。

ReID任务在大多数情况下都是多任务学习,主流是分为两个任务,一个是构建id loss,通过分类损失,来学习对应不同id的损失,另一种是triple loss为主的通过特征向量直接构建的损失,学习类内的相似性和类内的区分性,让不同的特征向量直接的区分度更高,让相同的特征向量更加趋同。

在ReID中常见的loss有Identity Loss、Verification Loss、Triplet loss

Base line Softmax loss
各种延伸的算法 Triplet loss, center loss

###########
id loss 的目的是对特定领域的信息进行建模,以便在每个模式中区分不同的人。
contast loss弥补了两种异质模式之间的差距,增强了学习表征的模式差异。


1、Cross-entropy loss
交叉熵是常见的分类损失,用来描述了两个概率分布之间的距离,当交叉熵越小说明二者之间越接近。

1)普通交叉熵损失
y’是经过激活函数的输出,所以在0-1之间。可见普通的交叉熵对于正样本而言,输出概率越大损失越小。对于负样本而言,输出概率越小则损失越小。

2)label smooth
当然在ReID的过程中还是存在很多的负样本,类别越多负样本的数量越大,为了做好负样本的损失构建而不是忽略负样本,可以在交叉熵中引入label smooth的操作,与传统交叉熵不同,不强制将类别考虑为0/1,而是有一定概率计算,具体公式如下:
目的是由于一些id的图片量太少了,防止过度拟合训练集。这个策略也是提高了模型的泛化能力的,防止对训练集中的类别过度拟合,根据查阅资料这个也是一个好的策略。

(1)对比损失(Contrastive loss)
对比损失用于训练孪生网络(Siamese network)。孪生网络的输入为一对(两张)图片,其实就是损失函数的计算,还是一个网络。标签相同y=1,不同为0,对比损失函数写作:

(2)三元组损失(Triplet loss)
三元组损失是一种被广泛应用的度量学习损失,之后的大量度量学习方法也是基于三元组损失演变而来。顾名思义,三元组损失需要三张输入图片。和对比损失不同,一个输入的三元组(Triplet)包括一对正样本对和一对负样本对。三张图片分别命名为固定图片(Anchor) a ,正样本图片(Positive)p和负样本图片(Negative) n 。图片 a 和图片 p 为一对正样本对,图片 a 和图片 n 为一对负样本对。则三元组损失表示为:

Triplet loss属于Metric Learning, 相比起softmax, 它可以方便地训练大规模数据集,不受显存的限制。缺点是过于关注局部,导致难以训练且收敛时间长
这里提一下Metric Learning的概念,它是根据不同的任务来自主学习出针对某个特定任务的度量距离函数。通过计算两张图片之间的相似度,使得输入图片被归入到相似度大的图片类别中去。通常的目标是使同类样本之间的距离尽可能缩小,不同类样本之间的距离尽可能放大。

后来有改进版认为原版的Triplet loss只考虑正负样本对之间的相对距离,而并没有考虑正样本对之间的绝对距离,为此提出改进三元组损失(Improved triplet loss):
保证网络不仅能够在特征空间把正负样本推开,也能保证正样本对之间的距离很近。

1、 Softmax loss
这就是softmax loss函数,xxxxxxxxx表示全连接层的输出。在计算Loss下降的过程中,我们让{W^T_{j}x_i+b_{j}} 的比重变大,从而使得log() 括号内的数更变大来更接近1,就会 log(1) = 0,整个loss就会下降。
这种方式只考虑了能否正确分类,却没有考虑类间距离。

softmax是最常见的人脸识别函数,其原理是去掉最后的分类层,作为解特征网络导出特征向量用于人脸识别。softmax训练的时候收敛得很快,但是精确度一般达到0.9左右就不会再上升了,一方面是作为分类网络,softmax不能像metric learning一样显式的优化类间和类内距离,所以性能不会特别好,另外,人脸识别的关键在于得到泛化能力强的feature,与分类能力并不是完全等价的。

a

2、center loss

可以看到,在separable features中,类内距离有的时候甚至是比内间距离要大的,这也是上问题到softmax效果不好的原因之一,它具备分类能力但是不具备metric learning的特性,没法压缩同一类别。在这个基础上,center loss被提出来,用于压缩同一类别。center loss的核心是,为每一个类别提供一个类别中心,最小化每个样本与该中心的距离:

https://blog.csdn.net/u012505617/article/details/89355690

这篇关于行人重识别ReID常用Loss损失函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/671799

相关文章

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Java String字符串的常用使用方法

《JavaString字符串的常用使用方法》String是JDK提供的一个类,是引用类型,并不是基本的数据类型,String用于字符串操作,在之前学习c语言的时候,对于一些字符串,会初始化字符数组表... 目录一、什么是String二、如何定义一个String1. 用双引号定义2. 通过构造函数定义三、St

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Linux上设置Ollama服务配置(常用环境变量)

《Linux上设置Ollama服务配置(常用环境变量)》本文主要介绍了Linux上设置Ollama服务配置(常用环境变量),Ollama提供了多种环境变量供配置,如调试模式、模型目录等,下面就来介绍一... 目录在 linux 上设置环境变量配置 OllamPOgxSRJfa手动安装安装特定版本查看日志在

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat

Mysql中深分页的五种常用方法整理

《Mysql中深分页的五种常用方法整理》在数据量非常大的情况下,深分页查询则变得很常见,这篇文章为大家整理了5个常用的方法,文中的示例代码讲解详细,大家可以根据自己的需求进行选择... 目录方案一:延迟关联 (Deferred Join)方案二:有序唯一键分页 (Cursor-based Paginatio

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的