行人重识别ReID常用Loss损失函数

2024-02-02 19:58

本文主要是介绍行人重识别ReID常用Loss损失函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

行人重识别ReID

算法的提高主要体现在损失函数的设计上,损失函数会对整个网络的优化有着导向性的作用。

ReID任务在大多数情况下都是多任务学习,主流是分为两个任务,一个是构建id loss,通过分类损失,来学习对应不同id的损失,另一种是triple loss为主的通过特征向量直接构建的损失,学习类内的相似性和类内的区分性,让不同的特征向量直接的区分度更高,让相同的特征向量更加趋同。

在ReID中常见的loss有Identity Loss、Verification Loss、Triplet loss

Base line Softmax loss
各种延伸的算法 Triplet loss, center loss

###########
id loss 的目的是对特定领域的信息进行建模,以便在每个模式中区分不同的人。
contast loss弥补了两种异质模式之间的差距,增强了学习表征的模式差异。


1、Cross-entropy loss
交叉熵是常见的分类损失,用来描述了两个概率分布之间的距离,当交叉熵越小说明二者之间越接近。

1)普通交叉熵损失
y’是经过激活函数的输出,所以在0-1之间。可见普通的交叉熵对于正样本而言,输出概率越大损失越小。对于负样本而言,输出概率越小则损失越小。

2)label smooth
当然在ReID的过程中还是存在很多的负样本,类别越多负样本的数量越大,为了做好负样本的损失构建而不是忽略负样本,可以在交叉熵中引入label smooth的操作,与传统交叉熵不同,不强制将类别考虑为0/1,而是有一定概率计算,具体公式如下:
目的是由于一些id的图片量太少了,防止过度拟合训练集。这个策略也是提高了模型的泛化能力的,防止对训练集中的类别过度拟合,根据查阅资料这个也是一个好的策略。

(1)对比损失(Contrastive loss)
对比损失用于训练孪生网络(Siamese network)。孪生网络的输入为一对(两张)图片,其实就是损失函数的计算,还是一个网络。标签相同y=1,不同为0,对比损失函数写作:

(2)三元组损失(Triplet loss)
三元组损失是一种被广泛应用的度量学习损失,之后的大量度量学习方法也是基于三元组损失演变而来。顾名思义,三元组损失需要三张输入图片。和对比损失不同,一个输入的三元组(Triplet)包括一对正样本对和一对负样本对。三张图片分别命名为固定图片(Anchor) a ,正样本图片(Positive)p和负样本图片(Negative) n 。图片 a 和图片 p 为一对正样本对,图片 a 和图片 n 为一对负样本对。则三元组损失表示为:

Triplet loss属于Metric Learning, 相比起softmax, 它可以方便地训练大规模数据集,不受显存的限制。缺点是过于关注局部,导致难以训练且收敛时间长
这里提一下Metric Learning的概念,它是根据不同的任务来自主学习出针对某个特定任务的度量距离函数。通过计算两张图片之间的相似度,使得输入图片被归入到相似度大的图片类别中去。通常的目标是使同类样本之间的距离尽可能缩小,不同类样本之间的距离尽可能放大。

后来有改进版认为原版的Triplet loss只考虑正负样本对之间的相对距离,而并没有考虑正样本对之间的绝对距离,为此提出改进三元组损失(Improved triplet loss):
保证网络不仅能够在特征空间把正负样本推开,也能保证正样本对之间的距离很近。

1、 Softmax loss
这就是softmax loss函数,xxxxxxxxx表示全连接层的输出。在计算Loss下降的过程中,我们让{W^T_{j}x_i+b_{j}} 的比重变大,从而使得log() 括号内的数更变大来更接近1,就会 log(1) = 0,整个loss就会下降。
这种方式只考虑了能否正确分类,却没有考虑类间距离。

softmax是最常见的人脸识别函数,其原理是去掉最后的分类层,作为解特征网络导出特征向量用于人脸识别。softmax训练的时候收敛得很快,但是精确度一般达到0.9左右就不会再上升了,一方面是作为分类网络,softmax不能像metric learning一样显式的优化类间和类内距离,所以性能不会特别好,另外,人脸识别的关键在于得到泛化能力强的feature,与分类能力并不是完全等价的。

a

2、center loss

可以看到,在separable features中,类内距离有的时候甚至是比内间距离要大的,这也是上问题到softmax效果不好的原因之一,它具备分类能力但是不具备metric learning的特性,没法压缩同一类别。在这个基础上,center loss被提出来,用于压缩同一类别。center loss的核心是,为每一个类别提供一个类别中心,最小化每个样本与该中心的距离:

https://blog.csdn.net/u012505617/article/details/89355690

这篇关于行人重识别ReID常用Loss损失函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/671799

相关文章

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

CSS弹性布局常用设置方式

《CSS弹性布局常用设置方式》文章总结了CSS布局与样式的常用属性和技巧,包括视口单位、弹性盒子布局、浮动元素、背景和边框样式、文本和阴影效果、溢出隐藏、定位以及背景渐变等,通过这些技巧,可以实现复杂... 一、单位元素vm 1vm 为视口的1%vh 视口高的1%vmin 参照长边vmax 参照长边re

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

Python中操作Redis的常用方法小结

《Python中操作Redis的常用方法小结》这篇文章主要为大家详细介绍了Python中操作Redis的常用方法,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解一下... 目录安装Redis开启、关闭Redisredis数据结构redis-cli操作安装redis-py数据库连接和释放增

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Java中Object类的常用方法小结

《Java中Object类的常用方法小结》JavaObject类是所有类的父类,位于java.lang包中,本文为大家整理了一些Object类的常用方法,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. public boolean equals(Object obj)2. public int ha