【算法与数据结构】300、674、LeetCode最长递增子序列 最长连续递增序列

2024-02-02 19:04

本文主要是介绍【算法与数据结构】300、674、LeetCode最长递增子序列 最长连续递增序列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、300、最长递增子序列
  • 二、674、最长连续递增序列
  • 三、完整代码

所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。

一、300、最长递增子序列

在这里插入图片描述

  思路分析

  • 第一步,动态数组的含义。 d p [ i ] dp[i] dp[i]代表 i i i之前包括以 i i i结尾的最长递增子序列的长度。我们在做递增比较的时候,两个子序列分别以 n u m s [ i ] nums[i] nums[i] n u m s [ j ] nums[j] nums[j]作为结尾。
  • 第二步,递推公式。位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。
	if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
  • 第三步,元素初始化。dp数组中的所有元素至少为1,因此都初始化为1。
  • 第四步,递归顺序。一共有两层循环,外层循环遍历整个nums数组,里层循环遍历 [ 0 , i − 1 ] [0,i-1] [0,i1]的nums数组。如果当前的nums[i]>nums[j]那么我们取 [ 0 , i − 1 ] [0,i-1] [0,i1]中最大的长度作为 d p [ i ] dp[i] dp[i]的值。
  • 第五步,打印结果。 d p [ n u m s . s i z e ( ) − 1 ] dp[nums.size()-1] dp[nums.size()1]未必是最大的,因此需要筛选出最大的结果返回。
	if (dp[i] > result) result = dp[i];

  程序如下

// 300、最长递增子序列
class Solution {
public:int lengthOfLIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);int result = 1;for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i];}return result;}
};

复杂度分析:

  • 时间复杂度: O ( n 2 ) O(n^2) O(n2)
  • 空间复杂度: O ( n ) O(n) O(n)

二、674、最长连续递增序列

在这里插入图片描述

  思路分析:本题和300、LeetCode最长递增子序列类似,区别在于最长子序列从非连续到连续。因为要求连续的递增子序列,那么我们只需要考察连续这个性质,而连续递增只需要对比nums数组中相邻的两个数。

  • 第一步,动态数组的含义。 d p [ i ] dp[i] dp[i]代表 i i i之前包括以 i i i结尾的最长递增子序列的长度。我们在做递增比较的时候,两个子序列分别以 n u m s [ i ] nums[i] nums[i] n u m s [ i − 1 ] nums[i-1] nums[i1]作为结尾。
  • 第二步,递推公式。本题只要一个循环,如果 n u m s [ i ] nums[i] nums[i] 大于 n u m s [ i − 1 ] nums[i-1] nums[i1],那么dp[i] = dp[i - 1] + 1。
	if (nums[i] > nums[i-1]) dp[i] = dp[i - 1] + 1;
  • 第三步,元素初始化。dp数组中的所有元素至少为1,因此都初始化为1。
  • 第四步,递归顺序。循环从 i = 1 i=1 i=1开始。
  • 第五步,打印结果。 d p [ n u m s . s i z e ( ) − 1 ] dp[nums.size()-1] dp[nums.size()1]未必是最大的,因此需要筛选出最大的结果返回。
	if (dp[i] > result) result = dp[i];

  程序如下

// 674、最长连续递增序列
class Solution2 {
public:int findLengthOfLCIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);int result = 1;for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i-1]) dp[i] = dp[i - 1] + 1;if (dp[i] > result) result = dp[i];}return result;}
};

复杂度分析:

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)

三、完整代码

# include <iostream>
# include <vector>
using namespace std;// 300、最长递增子序列
class Solution {
public:int lengthOfLIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);int result = 1;for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i];}return result;}
};// 674、最长连续递增序列
class Solution2 {
public:int findLengthOfLCIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);int result = 1;for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i-1]) dp[i] = dp[i - 1] + 1;if (dp[i] > result) result = dp[i];}return result;}
};int main() {vector<int> nums = { 1,3,5,4,7 };Solution2 s1;int result = s1.findLengthOfLCIS(nums);cout << result << endl;system("pause");return 0;
}

end

这篇关于【算法与数据结构】300、674、LeetCode最长递增子序列 最长连续递增序列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/671664

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1