关于最长递增子序列问题概述

2025-02-15 05:50

本文主要是介绍关于最长递增子序列问题概述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效...

一、最长递增子序列问题概述

1. 问题定义

给定一个整数序列,例如 nums = [10, 9, 2, 5, 3, 7, 101, 18],要找出它的一个最长的子序列,使得这个子序列中的元素是严格递增的。

在上述例子中,最长递增子序列是 [2, 3, 7, 101] 或者 [2, 5, 7, 101] 等,长度为 4。

2. 常规动态规划解法思路及缺点

思路

  • 通常可以定义一个 dp 数组,其中 dp[i] 表示以 nums[i] 为结尾的最长递增子序列的长度。
  • 状态转移方程一般为 dp[rPEbRpAi] = max(dp[j]) + 1(其中 0 <= j < inums[j] < nums[i]),也就是遍历前面所有小于 nums[i] 的元素对应的 dp 值,取最大的那个再加 1 来更新 dp[i]
  • 最后整个序列的最长递增子序列长度就是 dp 数组中的最大值。

缺点

  • 这种常规解法的时间复杂度是 ,当输入序列长度 n 较大时,效率会比较低
  • 所以需要进行优化来降低时间复杂度,提升求解效率

二、优化解法一:贪心 + 二分查找(时间复杂度优化至nlogn )

1. 贪心思想

维护一个数组 tail,它用来存储当前找到的最长递增子序列的 “尾巴” 元素,这个数组的长度其实就代表了当前找到的最长递增子序列的长度(初始时长度为 0)。

对于新遍历到的元素 nums[i],我们希望以一种贪心的策略把它尽可能合理地添加到 tail 数组中,使得 tail 数组始终保持一种有序的状态(因为递增子序列的特性决定了 “尾巴” 元素是有序递增的),这样就能通过后续的操作高效地找到最长递增子序列。

2. 二分查找的运用

每当遍历到一个新元素 nums[i] 时,我们在 tail 数组中通过二分查找找到第一个大于等于 nums[i] 的元素位置 pos(可以利用 Java 中的 Arrays.binarySearch 等二分查找相关方法实现,若没找到则返回插入点,即合适的位置)。

  • 如果 pos 等于 tail 数组当前长度,说明 nums[i] 比当前所有的 “尾巴” 元素都大,那它就可以作为新的 “尾巴” 元素添加到 tail 数组末尾,使得最长递增子序列长度加 1,即 tail = Arrays.copyOf(tail, tail.length + 1); tail[tail.length - 1] = nums[i];
  • 如果 pos 小于 tail 数组当前长度,说明 nums[i] 可以替换掉 tail[pos],因为这样做不会破坏递增子序列的性质,而且有可能在后续找到更长的递增子序列,即 tail[pos] = nums[i];

3. Java 代码示例

import java.util.Arrays;

public class LongestIncreasingSubsequence {
    public static int lengthOfLIS(int[] nums) {
        int[] tail = new int[nums.length];
        int len = 0;
        for (int num : nums) {
            int pos = Arrays.binarySearch(tail, 0, len, num);
            if (pos < 0) {
                pos = -(pos + 1);
            }
            tail[pos] = num;
            if (pos == len) {
                len++;
            }
        }
        return len;
    }

    public static void main(String[] args) {
China编程        int[] nums = {10, 9, 2, 5, 3, 7, 101, 18};
        int result = lengthOfLIS(nums);
        System.out.println("最长递增子序列长度为: " + result);
    }
}

在上述代码中:

  • lengthOfphpLIS 方法实现了优化后的最长递增子序列求解逻辑。通过不断遍历输入数组 nums,利用二分查找在 tail 数组中定位合适位置来更新 tail 数组,同时维护最长递增子序列的长度 len
  • main 方法进行简单测试,传入示例数组并输出最终计算得到的最长递增子序列长度。

三、优化解法二:动态规划 + 状态压缩(时间复杂度仍为O(n^2) ,但空间复杂度优化)

1. 思路

原始动态规划解法中我们使用了一个 dp 数组来记录以每个元素为结尾的最长递增子序列长度,但是其实在计算 dp[i] 时,我们只需要知道前面元素中小于 nums[i] 的那些元素对应的 dp 值情况,并不需要把所有之前元素对应的 dp 值都完整保存下来。

所以可以通过状态压缩,只使用一个长度为 n 的一维数组来模拟动态规划过程,每次更新当前元素对应的 dp 值时,及时覆盖之前不再需要的值,从而节省空间。

2. Java 代码示例

public class LongestIncreasingSubsequence {
    public static int lengthOfLIS(int[] nums) {
        int n = nums.length;
        int[] dp = new int[n];
        int maxLen = 1;
        for (int i = 0; i < n; i++) {
            dp[i] = 1;
            for (int j = 0; j < i; j++) {
                if (nums[j] < nums[i]) {
                    dp[i] = Math.max(dp[i], dp[j] + 1);
                }
            }
            maxLen = Math.max(maxLen, dp[i]);
        }
        return maxLen;
    }

    public static void main(String[] args) {
        int[] nums = {10, 9, 2, 5, 3, 7, 101, 18};
        int result = lengthOfLIS(nums);
        System.out.println("最长递增子序列长度为: " + result);
    }
}

在这个代码示例中:

  • lengthOfLIS 方法里,通过一个一维的 dp 数组来进行动态规划求解,内层循环中不断更新 dp[i] 的值,并且实时维护最大的最长递编程增子序android列长度 maxLen,最后返回 maxLen 作为结果。
  • main 方法同样是用于简单的测试场景,展示如何调用 lengthOfLIS 方法并输出结果。

通过这些优化解法,可以更高效地解决最长递增子序列问题,在不同的应用场景和数据规模下根据实际需求选择合适的优化方式来提升算法性能。

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持China编程(www.chinasem.cn)。

这篇关于关于最长递增子序列问题概述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153447

相关文章

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu