18- OpenCV:基于距离变换与分水岭的图像分割

2024-02-02 13:52

本文主要是介绍18- OpenCV:基于距离变换与分水岭的图像分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1、图像分割的含义

2、常见的图像分割方法

3、距离变换与分水岭介绍

4、相关API

5、代码演示


1、图像分割的含义

图像分割是指将一幅图像划分为若干个具有独立语义的区域或对象的过程。其目标是通过对图像进行像素级别的分类,将图像中不同的区域或对象分离出来,以便进一步分析、处理或理解图像。

简单来说:就是将图像分割成不同的对象,如下图所示,右边将图像的背景和马匹分割开。

(1)图像分割(Image Segmentation)是图像处理最重要的处理手段之一。

(2)图像分割的目标是将图像中像素根据一定的规则分为若干(N)个cluster集合,每个集合包含一类像素。(规则也就是不同的算法,算法不同可能会得到不同的结果 )

(3)根据算法分为监督学习方法和无监督学习方法,图像分割的算法多数都是无监督学习方法 - KMeans。

(4)图像分割在计算机视觉和图像处理领域具有广泛的应用,例如目标检测、图像编辑、医学影像分析等。它可以帮助我们识别图像中的不同物体、提取感兴趣的区域、分析物体的形状和结构等。

2、常见的图像分割方法

(1)基于阈值的分割:根据像素的灰度值与预先设定的阈值进行比较,将像素分为不同的类别。这种方法简单直观,适用于图像中目标与背景之间有明显差异的情况。

(2)区域生长法:从种子点开始,根据像素之间的相似性逐渐扩展区域,直到满足某个停止准则。该方法适用于图像中存在连续的区域或对象。

(3)边缘检测法:通过检测图像中的边缘信息,将图像分割为不同的区域。常用的边缘检测算法包括Canny边缘检测、Sobel算子等。

(4)基于图论的分割:将图像表示为一个图,通过最小割或最大流等算法将图像分割为多个区域。这种方法可以考虑到像素之间的空间关系和相似性。

(5)基于深度学习的分割:利用深度神经网络模型,如U-Net、Mask R-CNN等,对图像进行像素级别的分类,实现精细的图像分割。

3、距离变换与分水岭介绍

1、距离变换常见算法有两种:

(1)不断膨胀/ 腐蚀得到 ;

(2)基于倒角距离

2、分水岭变换常见的算法:基于浸泡理论实现

4、相关API

1、cv::distanceTransform 距离转换

distanceTransform(

InputArray  src,

OutputArray dst,  // dst输出8位或者32位的浮点数,单一通道,大小与输入图像一致

OutputArray  labels,  // 离散维诺图输出

int  distanceType,  // DIST_L1/DIST_L2,

int maskSize,  // 3x3,最新的支持5x5,推荐3x3

int labelType=DIST_LABEL_CCOMP

)

2、cv::watershed 分水岭

cv::watershed(

InputArray image,

InputOutputArray  markers

)

5、代码演示

代码流程的主要步骤:

(1)将白色背景变成黑色-目的是为后面的变换做准备

(2)使用filter2D与拉普拉斯算子实现图像对比度提高,sharp

(3)转为二值图像通过threshold

(4)距离变换

(5)对距离变换结果进行归一化到[0~1]之间

(6)使用阈值,再次二值化,得到标记

(7)腐蚀得到每个Peak - erode

(8)发现轮廓 – findContours

(9)绘制轮廓- drawContours

(10)分水岭变换 watershed

(11)对每个分割区域着色输出结果

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>using namespace std;
using namespace cv;int main(int argc, char** argv) {char input_win[] = "input image";char watershed_win[] = "watershed segmentation demo";Mat src = imread("cards.png");// Mat src = imread("D:/kuaidi.jpg");if (src.empty()) {printf("could not load image...\n");return -1;}namedWindow(input_win, CV_WINDOW_AUTOSIZE);imshow(input_win, src);// 1. change backgroundfor (int row = 0; row < src.rows; row++) {for (int col = 0; col < src.cols; col++) {if (src.at<Vec3b>(row, col) == Vec3b(255, 255, 255)) {src.at<Vec3b>(row, col)[0] = 0;src.at<Vec3b>(row, col)[1] = 0;src.at<Vec3b>(row, col)[2] = 0;}}}namedWindow("black background", CV_WINDOW_AUTOSIZE);imshow("black background", src);// sharpenMat kernel = (Mat_<float>(3, 3) << 1, 1, 1, 1, -8, 1, 1, 1, 1);Mat imgLaplance;Mat sharpenImg = src;filter2D(src, imgLaplance, CV_32F, kernel, Point(-1, -1), 0, BORDER_DEFAULT);src.convertTo(sharpenImg, CV_32F);Mat resultImg = sharpenImg - imgLaplance;resultImg.convertTo(resultImg, CV_8UC3);imgLaplance.convertTo(imgLaplance, CV_8UC3);imshow("sharpen image", resultImg);// src = resultImg; // copy back// convert to binaryMat binaryImg;cvtColor(src, resultImg, CV_BGR2GRAY);threshold(resultImg, binaryImg, 40, 255, THRESH_BINARY | THRESH_OTSU);imshow("binary image", binaryImg);Mat distImg;distanceTransform(binaryImg, distImg, DIST_L1, 3, 5);normalize(distImg, distImg, 0, 1, NORM_MINMAX);imshow("distance result", distImg);// binary againthreshold(distImg, distImg, .4, 1, THRESH_BINARY);Mat k1 = Mat::ones(13, 13, CV_8UC1);erode(distImg, distImg, k1, Point(-1, -1));imshow("distance binary image", distImg);// markers Mat dist_8u;distImg.convertTo(dist_8u, CV_8U);vector<vector<Point>> contours;findContours(dist_8u, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0, 0));// create makersMat markers = Mat::zeros(src.size(), CV_32SC1);for (size_t i = 0; i < contours.size(); i++) {drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i) + 1), -1);}circle(markers, Point(5, 5), 3, Scalar(255, 255, 255), -1);imshow("my markers", markers*1000);// perform watershedwatershed(src, markers);Mat mark = Mat::zeros(markers.size(), CV_8UC1);markers.convertTo(mark, CV_8UC1);bitwise_not(mark, mark, Mat());imshow("watershed image", mark);// generate random colorvector<Vec3b> colors;for (size_t i = 0; i < contours.size(); i++) {int r = theRNG().uniform(0, 255);int g = theRNG().uniform(0, 255);int b = theRNG().uniform(0, 255);colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));}// fill with color and display final resultMat dst = Mat::zeros(markers.size(), CV_8UC3);for (int row = 0; row < markers.rows; row++) {for (int col = 0; col < markers.cols; col++) {int index = markers.at<int>(row, col);if (index > 0 && index <= static_cast<int>(contours.size())) {dst.at<Vec3b>(row, col) = colors[index - 1];}else {dst.at<Vec3b>(row, col) = Vec3b(0, 0, 0);}}}imshow("Final Result", dst);waitKey(0);return 0;
}

效果展示:

(1)加载图像

(2)change background 去背景

(3)Sharp 锐化

(4)二值距离变换 convert to binary

(5)二值腐蚀 Peaks

(6)标记 makers

(7)分水岭变换 perform watershed

(8)着色效果 fill with color

   

这篇关于18- OpenCV:基于距离变换与分水岭的图像分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/670907

相关文章

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

树莓派5_opencv笔记27:Opencv录制视频(无声音)

今日继续学习树莓派5 8G:(Raspberry Pi,简称RPi或RasPi)  本人所用树莓派5 装载的系统与版本如下:  版本可用命令 (lsb_release -a) 查询: Opencv 与 python 版本如下: 今天就水一篇文章,用树莓派摄像头,Opencv录制一段视频保存在指定目录... 文章提供测试代码讲解,整体代码贴出、测试效果图 目录 阶段一:录制一段

Verybot之OpenCV应用三:色标跟踪

下面的这个应用主要完成的是Verybot跟踪色标的功能,识别部分还是居于OpenCV编写,色标跟踪一般需要将图像的颜色模式进行转换,将RGB转换为HSV,因为对HSV格式下的图像进行识别时受光线的影响比较小,但是也有采用RGB模式来进行识别的情况,这种情况一般光线条件比较固定,背景跟识别物在颜色上很容易区分出来。         下面这个程序的流程大致是这样的: