DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程)

本文主要是介绍DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DeepSORT算法是一种用于目标跟踪的算法,它可以对车辆和行人进行跟踪计数,并且可以检测是否存在道路违规行为。该算法采用深度学习技术来提取特征,并使用卡尔曼滤波器来估计物体的速度和位置。

DeepSORT算法通过首先使用目标检测算法来识别出场景中的车辆和行人,然后使用卷积神经网络(CNN)来提取物体的特征。接着,该算法使用余弦相似度来计算物体之间的相似度,并使用匈牙利算法来匹配跟踪器和检测器之间的物体。最后,DeepSORT算法使用卡尔曼滤波器来预测物体的位置和速度,并更新跟踪器状态。

除了可以进行目标跟踪计数外,DeepSORT算法还可以用于道路违规检测。例如,该算法可以检测车辆是否违规超速或跨越道路中心线等。此外,DeepSORT算法还可以应用于视频监控、智能交通和自动驾驶等领域。

总之,DeepSORT算法是一种用于目标跟踪的高效算法,它可以用于车辆和行人的跟踪计数,并且可以检测道路违规行为。在未来,该算法将会在各种领域中有广泛的应用价值。

特征提取

此处面对的场景是是交通摄像头下的马路场景,数据格式为视频流或者视频,所以我们要提取视频的第一帧作为背景来进行车道线的标定,运行extra.py文件即可提取第一帧背景图片。

 车道线和斑马线

根据第一步提取的场景背景图片,进行道路信息的标定,并返回道路信息的相关参数。
标定的方式是运行车道线标定文件即可。
先鼠标在背景图片上从左至右依次点击红色的两边的车道线实线,然后鼠标再依次在背景图片点击斑马线绿色框的从左至右四个顶点。这样就可以将斑马线和车道线的位置信息进行提取了,项目目录下会生成如上图标记好了的输出图片如上。

车牌识别


车牌号使用车牌号的识别是从车辆出现在画面的第一帧开始,一直到车辆消失在画面中。我们并不能事先确定在哪一帧对车牌的识别效果最好。因此,我们在车辆出现的第一帧,就将它的id和车牌信息传入字典chepaixinxi保存起来。如果当前帧比之前的识别效果都好(置信度高),我们就用它替换之前的车牌信息。另一方面,为了节省计算资源,只要是该车在某一帧的车牌置信度高于0.9,我们就不再将其传入车牌识别模块,运行LPR.py即可提取车牌信息,提取效果如下图所示

 

import cv2
import numpy as np
import math""" 输入图像归一化 """def stretch(img):max = float(img.max())min = float(img.min())for i in range(img.shape[0]):for j in range(img.shape[1]):img[i, j] = (255 / (max - min)) * img[i, j] - (255 * min) / (max - min)return imgdef dobinaryzation(img):max = float(img.max())min = float(img.min())x = max - ((max - min) / 2)ret, thresholdimg = cv2.threshold(img, x, 255, cv2.THRESH_BINARY)return thresholdimgdef find_retangle(contour):y, x = [], []for p in contour:y.append(p[0][0])x.append(p[0][1])return [min(y), min(x), max(y), max(x)]def locate_license(img, orgimg):img, contours, hierachy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 找到最大的三个区域blocks = []for c in contours:# 找出轮廓的左上和右下点,计算出其面积和长宽比r = find_retangle(c)a = (r[2] - r[0]) * (r[3] - r[1])s = (r[2] - r[0]) / (r[3] - r[1])blocks.append([r, a, s])# 选出面积最大的3个区域blocks = sorted(blocks, key=lambda b: b[2])[-3:]# 使用颜色识别判断出最像车牌的区域maxweight, maxinedx = 0, -1for i in range(len(blocks)):b = orgimg[blocks[i][0][1]:blocks[i][0][3], blocks[i][0][0]:blocks[i][0][2]]# RGB 转HSVhsv = cv2.cvtColor(b, cv2.COLOR_BGR2HSV)# 蓝色车牌范围lower = np.array([100, 50, 50])upper = np.array([140, 255, 255])# 根据阈值构建掩膜mask = cv2.inRange(hsv, lower, upper)# 统计权值w1 = 0for m in mask:w1 += m / 255w2 = 0for w in w1:w2 += w# 选出最大权值的区域if w2 > maxweight:maxindex = imaxweight = w2return blocks[maxindex][0]def find_license(img):'''预处理'''# 压缩图像a = 400 * img.shape[0] / img.shape[1]a = int(a)img = cv2.resize(img, (400, a))cv2.imshow('img',img)cv2.waitKey()# RGB转灰色grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)cv2.imshow('grayimg', grayimg)cv2.waitKey()# 灰度拉伸stretchedimg = stretch(grayimg)cv2.imshow('stretchedimg', stretchedimg)cv2.waitKey()# 进行开运算,用来去除噪声r = 16h = w = r * 2 + 1kernel = np.zeros((h, w), dtype=np.uint8)cv2.circle(kernel, (r, r), r, 1, -1)openingimg = cv2.morphologyEx(stretchedimg, cv2.MORPH_OPEN, kernel)cv2.imshow('openingimg', openingimg)cv2.waitKey()strtimg = cv2.absdiff(stretchedimg, openingimg)cv2.imshow('strtimg', strtimg)cv2.waitKey()# 图像二值化binaryimg = dobinaryzation(strtimg)cv2.imshow('binaryimg', binaryimg)cv2.waitKey()# Canny算子进行边缘检测cannyimg = cv2.Canny(binaryimg, binaryimg.shape[0], binaryimg.shape[1])cv2.imshow('cannyimg', cannyimg)cv2.waitKey()'''消除小区域,连通大区域'''# 进行闭运算kernel = np.ones((5, 19), np.uint8)closingimg = cv2.morphologyEx(cannyimg, cv2.MORPH_CLOSE, kernel)cv2.imshow('closingimg', closingimg)cv2.waitKey()# 进行开运算openingimg = cv2.morphologyEx(closingimg, cv2.MORPH_OPEN, kernel)cv2.imshow('openingimg', openingimg)cv2.waitKey()# 再次进行开运算kernel = np.ones((11, 5), np.uint8)openingimg = cv2.morphologyEx(openingimg, cv2.MORPH_OPEN, kernel)cv2.imshow('openingimg', openingimg)cv2.waitKey()# 消除小区域,定位车牌位置rect = locate_license(openingimg, img)return rect, imgif __name__ == '__main__':orgimg = cv2.imread('car3.jpg')rect, img = find_license(orgimg)cv2.rectangle(img, (rect[0], rect[1]), (rect[2], rect[3]), (0, 255, 0), 2)cv2.imshow('img', img)cv2.waitKey()cv2.destroyAllWindows()

车辆越实线、不礼让行人检测

我们将车辆在上一帧的检测位置保存下来。如果车辆在上一帧的位置和在这一帧的位置分别位于车道线实线的两侧,或者落在了实线上,我们就判定车辆非法越实线了。行人在斑马线上时,车辆也在斑马线上 ==>车辆不礼让行人,运行效果图:

# 生成感兴趣区域即Mask掩模
def region_of_interest(image, vertices):mask = np.zeros_like(image)  # 生成图像大小一致的zeros矩# 填充顶点vertices中间区域if len(image.shape) > 2:channel_count = image.shape[2]ignore_mask_color = (255,) * channel_countelse:ignore_mask_color = 255# 填充函数cv.fillPoly(mask, vertices, ignore_mask_color)masked_image = cv.bitwise_and(image, mask)return masked_image# 生成Mask掩模vertices = np.array([[(0, imshape[0]), (9 * imshape[1] / 20, 11 * imshape[0] / 18),(11 * imshape[1] / 20, 11 * imshape[0] / 18), (imshape[1], imshape[0])]], dtype=np.int32)masked_edges = region_of_interest(edge_image, vertices)

企鹅耗子:767172261

这篇关于DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/661208

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形