DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程)

本文主要是介绍DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DeepSORT算法是一种用于目标跟踪的算法,它可以对车辆和行人进行跟踪计数,并且可以检测是否存在道路违规行为。该算法采用深度学习技术来提取特征,并使用卡尔曼滤波器来估计物体的速度和位置。

DeepSORT算法通过首先使用目标检测算法来识别出场景中的车辆和行人,然后使用卷积神经网络(CNN)来提取物体的特征。接着,该算法使用余弦相似度来计算物体之间的相似度,并使用匈牙利算法来匹配跟踪器和检测器之间的物体。最后,DeepSORT算法使用卡尔曼滤波器来预测物体的位置和速度,并更新跟踪器状态。

除了可以进行目标跟踪计数外,DeepSORT算法还可以用于道路违规检测。例如,该算法可以检测车辆是否违规超速或跨越道路中心线等。此外,DeepSORT算法还可以应用于视频监控、智能交通和自动驾驶等领域。

总之,DeepSORT算法是一种用于目标跟踪的高效算法,它可以用于车辆和行人的跟踪计数,并且可以检测道路违规行为。在未来,该算法将会在各种领域中有广泛的应用价值。

特征提取

此处面对的场景是是交通摄像头下的马路场景,数据格式为视频流或者视频,所以我们要提取视频的第一帧作为背景来进行车道线的标定,运行extra.py文件即可提取第一帧背景图片。

 车道线和斑马线

根据第一步提取的场景背景图片,进行道路信息的标定,并返回道路信息的相关参数。
标定的方式是运行车道线标定文件即可。
先鼠标在背景图片上从左至右依次点击红色的两边的车道线实线,然后鼠标再依次在背景图片点击斑马线绿色框的从左至右四个顶点。这样就可以将斑马线和车道线的位置信息进行提取了,项目目录下会生成如上图标记好了的输出图片如上。

车牌识别


车牌号使用车牌号的识别是从车辆出现在画面的第一帧开始,一直到车辆消失在画面中。我们并不能事先确定在哪一帧对车牌的识别效果最好。因此,我们在车辆出现的第一帧,就将它的id和车牌信息传入字典chepaixinxi保存起来。如果当前帧比之前的识别效果都好(置信度高),我们就用它替换之前的车牌信息。另一方面,为了节省计算资源,只要是该车在某一帧的车牌置信度高于0.9,我们就不再将其传入车牌识别模块,运行LPR.py即可提取车牌信息,提取效果如下图所示

 

import cv2
import numpy as np
import math""" 输入图像归一化 """def stretch(img):max = float(img.max())min = float(img.min())for i in range(img.shape[0]):for j in range(img.shape[1]):img[i, j] = (255 / (max - min)) * img[i, j] - (255 * min) / (max - min)return imgdef dobinaryzation(img):max = float(img.max())min = float(img.min())x = max - ((max - min) / 2)ret, thresholdimg = cv2.threshold(img, x, 255, cv2.THRESH_BINARY)return thresholdimgdef find_retangle(contour):y, x = [], []for p in contour:y.append(p[0][0])x.append(p[0][1])return [min(y), min(x), max(y), max(x)]def locate_license(img, orgimg):img, contours, hierachy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 找到最大的三个区域blocks = []for c in contours:# 找出轮廓的左上和右下点,计算出其面积和长宽比r = find_retangle(c)a = (r[2] - r[0]) * (r[3] - r[1])s = (r[2] - r[0]) / (r[3] - r[1])blocks.append([r, a, s])# 选出面积最大的3个区域blocks = sorted(blocks, key=lambda b: b[2])[-3:]# 使用颜色识别判断出最像车牌的区域maxweight, maxinedx = 0, -1for i in range(len(blocks)):b = orgimg[blocks[i][0][1]:blocks[i][0][3], blocks[i][0][0]:blocks[i][0][2]]# RGB 转HSVhsv = cv2.cvtColor(b, cv2.COLOR_BGR2HSV)# 蓝色车牌范围lower = np.array([100, 50, 50])upper = np.array([140, 255, 255])# 根据阈值构建掩膜mask = cv2.inRange(hsv, lower, upper)# 统计权值w1 = 0for m in mask:w1 += m / 255w2 = 0for w in w1:w2 += w# 选出最大权值的区域if w2 > maxweight:maxindex = imaxweight = w2return blocks[maxindex][0]def find_license(img):'''预处理'''# 压缩图像a = 400 * img.shape[0] / img.shape[1]a = int(a)img = cv2.resize(img, (400, a))cv2.imshow('img',img)cv2.waitKey()# RGB转灰色grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)cv2.imshow('grayimg', grayimg)cv2.waitKey()# 灰度拉伸stretchedimg = stretch(grayimg)cv2.imshow('stretchedimg', stretchedimg)cv2.waitKey()# 进行开运算,用来去除噪声r = 16h = w = r * 2 + 1kernel = np.zeros((h, w), dtype=np.uint8)cv2.circle(kernel, (r, r), r, 1, -1)openingimg = cv2.morphologyEx(stretchedimg, cv2.MORPH_OPEN, kernel)cv2.imshow('openingimg', openingimg)cv2.waitKey()strtimg = cv2.absdiff(stretchedimg, openingimg)cv2.imshow('strtimg', strtimg)cv2.waitKey()# 图像二值化binaryimg = dobinaryzation(strtimg)cv2.imshow('binaryimg', binaryimg)cv2.waitKey()# Canny算子进行边缘检测cannyimg = cv2.Canny(binaryimg, binaryimg.shape[0], binaryimg.shape[1])cv2.imshow('cannyimg', cannyimg)cv2.waitKey()'''消除小区域,连通大区域'''# 进行闭运算kernel = np.ones((5, 19), np.uint8)closingimg = cv2.morphologyEx(cannyimg, cv2.MORPH_CLOSE, kernel)cv2.imshow('closingimg', closingimg)cv2.waitKey()# 进行开运算openingimg = cv2.morphologyEx(closingimg, cv2.MORPH_OPEN, kernel)cv2.imshow('openingimg', openingimg)cv2.waitKey()# 再次进行开运算kernel = np.ones((11, 5), np.uint8)openingimg = cv2.morphologyEx(openingimg, cv2.MORPH_OPEN, kernel)cv2.imshow('openingimg', openingimg)cv2.waitKey()# 消除小区域,定位车牌位置rect = locate_license(openingimg, img)return rect, imgif __name__ == '__main__':orgimg = cv2.imread('car3.jpg')rect, img = find_license(orgimg)cv2.rectangle(img, (rect[0], rect[1]), (rect[2], rect[3]), (0, 255, 0), 2)cv2.imshow('img', img)cv2.waitKey()cv2.destroyAllWindows()

车辆越实线、不礼让行人检测

我们将车辆在上一帧的检测位置保存下来。如果车辆在上一帧的位置和在这一帧的位置分别位于车道线实线的两侧,或者落在了实线上,我们就判定车辆非法越实线了。行人在斑马线上时,车辆也在斑马线上 ==>车辆不礼让行人,运行效果图:

# 生成感兴趣区域即Mask掩模
def region_of_interest(image, vertices):mask = np.zeros_like(image)  # 生成图像大小一致的zeros矩# 填充顶点vertices中间区域if len(image.shape) > 2:channel_count = image.shape[2]ignore_mask_color = (255,) * channel_countelse:ignore_mask_color = 255# 填充函数cv.fillPoly(mask, vertices, ignore_mask_color)masked_image = cv.bitwise_and(image, mask)return masked_image# 生成Mask掩模vertices = np.array([[(0, imshape[0]), (9 * imshape[1] / 20, 11 * imshape[0] / 18),(11 * imshape[1] / 20, 11 * imshape[0] / 18), (imshape[1], imshape[0])]], dtype=np.int32)masked_edges = region_of_interest(edge_image, vertices)

企鹅耗子:767172261

这篇关于DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/661208

相关文章

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

Golang如何用gorm实现分页的功能

《Golang如何用gorm实现分页的功能》:本文主要介绍Golang如何用gorm实现分页的功能方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景go库下载初始化数据【1】建表【2】插入数据【3】查看数据4、代码示例【1】gorm结构体定义【2】分页结构体

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系