DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程)

本文主要是介绍DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DeepSORT算法是一种用于目标跟踪的算法,它可以对车辆和行人进行跟踪计数,并且可以检测是否存在道路违规行为。该算法采用深度学习技术来提取特征,并使用卡尔曼滤波器来估计物体的速度和位置。

DeepSORT算法通过首先使用目标检测算法来识别出场景中的车辆和行人,然后使用卷积神经网络(CNN)来提取物体的特征。接着,该算法使用余弦相似度来计算物体之间的相似度,并使用匈牙利算法来匹配跟踪器和检测器之间的物体。最后,DeepSORT算法使用卡尔曼滤波器来预测物体的位置和速度,并更新跟踪器状态。

除了可以进行目标跟踪计数外,DeepSORT算法还可以用于道路违规检测。例如,该算法可以检测车辆是否违规超速或跨越道路中心线等。此外,DeepSORT算法还可以应用于视频监控、智能交通和自动驾驶等领域。

总之,DeepSORT算法是一种用于目标跟踪的高效算法,它可以用于车辆和行人的跟踪计数,并且可以检测道路违规行为。在未来,该算法将会在各种领域中有广泛的应用价值。

特征提取

此处面对的场景是是交通摄像头下的马路场景,数据格式为视频流或者视频,所以我们要提取视频的第一帧作为背景来进行车道线的标定,运行extra.py文件即可提取第一帧背景图片。

 车道线和斑马线

根据第一步提取的场景背景图片,进行道路信息的标定,并返回道路信息的相关参数。
标定的方式是运行车道线标定文件即可。
先鼠标在背景图片上从左至右依次点击红色的两边的车道线实线,然后鼠标再依次在背景图片点击斑马线绿色框的从左至右四个顶点。这样就可以将斑马线和车道线的位置信息进行提取了,项目目录下会生成如上图标记好了的输出图片如上。

车牌识别


车牌号使用车牌号的识别是从车辆出现在画面的第一帧开始,一直到车辆消失在画面中。我们并不能事先确定在哪一帧对车牌的识别效果最好。因此,我们在车辆出现的第一帧,就将它的id和车牌信息传入字典chepaixinxi保存起来。如果当前帧比之前的识别效果都好(置信度高),我们就用它替换之前的车牌信息。另一方面,为了节省计算资源,只要是该车在某一帧的车牌置信度高于0.9,我们就不再将其传入车牌识别模块,运行LPR.py即可提取车牌信息,提取效果如下图所示

 

import cv2
import numpy as np
import math""" 输入图像归一化 """def stretch(img):max = float(img.max())min = float(img.min())for i in range(img.shape[0]):for j in range(img.shape[1]):img[i, j] = (255 / (max - min)) * img[i, j] - (255 * min) / (max - min)return imgdef dobinaryzation(img):max = float(img.max())min = float(img.min())x = max - ((max - min) / 2)ret, thresholdimg = cv2.threshold(img, x, 255, cv2.THRESH_BINARY)return thresholdimgdef find_retangle(contour):y, x = [], []for p in contour:y.append(p[0][0])x.append(p[0][1])return [min(y), min(x), max(y), max(x)]def locate_license(img, orgimg):img, contours, hierachy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 找到最大的三个区域blocks = []for c in contours:# 找出轮廓的左上和右下点,计算出其面积和长宽比r = find_retangle(c)a = (r[2] - r[0]) * (r[3] - r[1])s = (r[2] - r[0]) / (r[3] - r[1])blocks.append([r, a, s])# 选出面积最大的3个区域blocks = sorted(blocks, key=lambda b: b[2])[-3:]# 使用颜色识别判断出最像车牌的区域maxweight, maxinedx = 0, -1for i in range(len(blocks)):b = orgimg[blocks[i][0][1]:blocks[i][0][3], blocks[i][0][0]:blocks[i][0][2]]# RGB 转HSVhsv = cv2.cvtColor(b, cv2.COLOR_BGR2HSV)# 蓝色车牌范围lower = np.array([100, 50, 50])upper = np.array([140, 255, 255])# 根据阈值构建掩膜mask = cv2.inRange(hsv, lower, upper)# 统计权值w1 = 0for m in mask:w1 += m / 255w2 = 0for w in w1:w2 += w# 选出最大权值的区域if w2 > maxweight:maxindex = imaxweight = w2return blocks[maxindex][0]def find_license(img):'''预处理'''# 压缩图像a = 400 * img.shape[0] / img.shape[1]a = int(a)img = cv2.resize(img, (400, a))cv2.imshow('img',img)cv2.waitKey()# RGB转灰色grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)cv2.imshow('grayimg', grayimg)cv2.waitKey()# 灰度拉伸stretchedimg = stretch(grayimg)cv2.imshow('stretchedimg', stretchedimg)cv2.waitKey()# 进行开运算,用来去除噪声r = 16h = w = r * 2 + 1kernel = np.zeros((h, w), dtype=np.uint8)cv2.circle(kernel, (r, r), r, 1, -1)openingimg = cv2.morphologyEx(stretchedimg, cv2.MORPH_OPEN, kernel)cv2.imshow('openingimg', openingimg)cv2.waitKey()strtimg = cv2.absdiff(stretchedimg, openingimg)cv2.imshow('strtimg', strtimg)cv2.waitKey()# 图像二值化binaryimg = dobinaryzation(strtimg)cv2.imshow('binaryimg', binaryimg)cv2.waitKey()# Canny算子进行边缘检测cannyimg = cv2.Canny(binaryimg, binaryimg.shape[0], binaryimg.shape[1])cv2.imshow('cannyimg', cannyimg)cv2.waitKey()'''消除小区域,连通大区域'''# 进行闭运算kernel = np.ones((5, 19), np.uint8)closingimg = cv2.morphologyEx(cannyimg, cv2.MORPH_CLOSE, kernel)cv2.imshow('closingimg', closingimg)cv2.waitKey()# 进行开运算openingimg = cv2.morphologyEx(closingimg, cv2.MORPH_OPEN, kernel)cv2.imshow('openingimg', openingimg)cv2.waitKey()# 再次进行开运算kernel = np.ones((11, 5), np.uint8)openingimg = cv2.morphologyEx(openingimg, cv2.MORPH_OPEN, kernel)cv2.imshow('openingimg', openingimg)cv2.waitKey()# 消除小区域,定位车牌位置rect = locate_license(openingimg, img)return rect, imgif __name__ == '__main__':orgimg = cv2.imread('car3.jpg')rect, img = find_license(orgimg)cv2.rectangle(img, (rect[0], rect[1]), (rect[2], rect[3]), (0, 255, 0), 2)cv2.imshow('img', img)cv2.waitKey()cv2.destroyAllWindows()

车辆越实线、不礼让行人检测

我们将车辆在上一帧的检测位置保存下来。如果车辆在上一帧的位置和在这一帧的位置分别位于车道线实线的两侧,或者落在了实线上,我们就判定车辆非法越实线了。行人在斑马线上时,车辆也在斑马线上 ==>车辆不礼让行人,运行效果图:

# 生成感兴趣区域即Mask掩模
def region_of_interest(image, vertices):mask = np.zeros_like(image)  # 生成图像大小一致的zeros矩# 填充顶点vertices中间区域if len(image.shape) > 2:channel_count = image.shape[2]ignore_mask_color = (255,) * channel_countelse:ignore_mask_color = 255# 填充函数cv.fillPoly(mask, vertices, ignore_mask_color)masked_image = cv.bitwise_and(image, mask)return masked_image# 生成Mask掩模vertices = np.array([[(0, imshape[0]), (9 * imshape[1] / 20, 11 * imshape[0] / 18),(11 * imshape[1] / 20, 11 * imshape[0] / 18), (imshape[1], imshape[0])]], dtype=np.int32)masked_edges = region_of_interest(edge_image, vertices)

企鹅耗子:767172261

这篇关于DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/661208

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面