TensorFlow2实战-系列教程4:数据增强:keras工具包/Data Augmentation

本文主要是介绍TensorFlow2实战-系列教程4:数据增强:keras工具包/Data Augmentation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🧡💛💚TensorFlow2实战-系列教程 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Jupyter Notebook中进行
本篇文章配套的代码资源已经上传

对于图像数据,将其进行翻转、放缩、平移、旋转操作就可以得到一组新的数据:
在这里插入图片描述

1、展示输入输出

import matplotlib.pyplot as plt
from PIL import Image
%matplotlib inline
from keras.preprocessing import image
import keras.backend as K
import os
import glob
import numpy as np
def print_result(path):name_list = glob.glob(path)fig = plt.figure(figsize=(12,16))for i in range(3):img = Image.open(name_list[i])sub_img = fig.add_subplot(131+i)sub_img.imshow(img)
img_path = './img/superman/*'
in_path = './img/'
out_path = './output/'
name_list = glob.glob(img_path)
print(name_list)
print_result(img_path)
  1. img_path 就是存放3张图像数据的路径,in_path 、out_path 暂时没用到
  2. name_list 查看一下三张数据的路径字符信息
  3. print_result就是一个专门用来打印3张图像的函数

打印结果:

[‘./img/superman\00000008.jpg’,
‘./img/superman\00000009.jpg’,
‘./img/superman\00000010.jpg’]

在这里插入图片描述

2、调整图像大小

datagen = image.ImageDataGenerator()
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False,  save_to_dir=out_path+'resize',save_prefix='gen', target_size=(224, 224))
  1. 创建一个数据增强的实例
  2. 指定参数加载图像数据
  3. save_to_dir=out_path+‘resize’,用到了前面的输出路径
  4. 指定了target_size参数后图像都会被重置成这个尺寸
for i in range(3):gen_data.next()
print_result(out_path+'resize/*')

从数据生成器中获取数据,将图像打印出来
打印结果:
在这里插入图片描述

3、旋转图像

datagen = image.ImageDataGenerator(rotation_range=45)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'rotation_range',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'rotation_range/*')
  1. 创建一个旋转的数据增强实例,
  2. 创建一个数据增强实例,实际上就是直接加载数据
  3. 将加载的图像数据重置尺寸
  4. 将重置尺寸的图像转换成ndarray格式
  5. 将旋转数据增强应用到重置尺寸的图像数据中
  6. 使用数据增强生成器重新从目录加载数据
  7. 保存加载的数据
  8. 使用for循环:
  9. 生成并处理三个图像,由于设置了 save_to_dir,这些图像将被保存。
  10. 打印三个图像

打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.

在这里插入图片描述

4、平移变换

datagen = image.ImageDataGenerator(width_shift_range=0.3,height_shift_range=0.3)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'shift',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'shift/*')

与3中不同的是,这段代码是进行平移变换进行数据增强,指定了平移变换的参数,width_shift_range=0.3,height_shift_range=0.3,这两个参数分别表示会在水平方向和垂直方向±30%的范围内随机移动

打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.

在这里插入图片描述

datagen = image.ImageDataGenerator(width_shift_range=-0.3,height_shift_range=0.3)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'shift2',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'shift2/*')

由于是随机的,这两段代码完全一样,但是结果却不同
打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.
在这里插入图片描述

5、缩放

datagen = image.ImageDataGenerator(zoom_range=0.5)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'zoom',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'zoom/*')

这段代码与3中不同的就是,这里指定缩放参数来进行缩放数据增强
打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.

在这里插入图片描述

6、channel_shift

datagen = image.ImageDataGenerator(channel_shift_range=15)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'channel',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'channel/*')

这段代码与3中不同的就是,这里指定通道偏移参数来进行通道偏移数据增强
打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.
在这里插入图片描述

7、水平翻转

datagen = image.ImageDataGenerator(horizontal_flip=True)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'horizontal',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'horizontal/*')

这段代码与3中不同的就是,这里指定水平翻转参数来进行水平翻转数据增强
在这里插入图片描述

8、rescale重新缩放

datagen = image.ImageDataGenerator(rescale= 1/255)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'rescale',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'rescale/*')

这段代码与3中不同的就是,这里指定rescale重新缩放参数来进行rescale重新缩放数据增强
通常用于归一化图像数据。将图像像素值从 [0, 255] 缩放到 [0, 1] 范围,有助于模型的训练
在这里插入图片描述

9、填充方法

  • ‘constant’: kkkkkkkk|abcd|kkkkkkkk (cval=k)
  • ‘nearest’: aaaaaaaa|abcd|dddddddd
  • ‘reflect’: abcddcba|abcd|dcbaabcd
  • ‘wrap’: abcdabcd|abcd|abcdabcd
datagen = image.ImageDataGenerator(fill_mode='wrap', zoom_range=[4, 4])
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'fill_mode',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'fill_mode/*')
  • fill_mode='wrap':当应用几何变换后,图像中可能会出现一些新的空白区域。fill_mode 定义了如何填充这些空白区域。在这种情况下,使用 'wrap' 模式,意味着空白区域将用图像边缘的像素“包裹”填充。
  • zoom_range=[4, 4]:这设置了图像缩放的范围。在这里,它被设置为在 4 倍范围内进行随机缩放。由于最小和最大缩放因子相同,这将导致所有图像都被放大 4 倍

用原图像填充,任何超出原始图像边界的区域将被图像的对边界像素填充
在这里插入图片描述

datagen = image.ImageDataGenerator(fill_mode='nearest', zoom_range=[4, 4])
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'nearest',save_prefix='gen', target_size=(224, 224))
for i in range(3):gen_data.next()
print_result(out_path+'nearest/*')

使用最近点填充,每个空白区域的像素将取其最近的非空白区域的像素值
在这里插入图片描述

这篇关于TensorFlow2实战-系列教程4:数据增强:keras工具包/Data Augmentation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/656671

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置